首页> 外文期刊>International Journal for Multiscale Computational Engineering >Multiscale Modeling of Point and Line Defects in Cubic Lattices
【24h】

Multiscale Modeling of Point and Line Defects in Cubic Lattices

机译:立方格中点和线缺陷的多尺度建模

获取原文
获取原文并翻译 | 示例

摘要

A multilength scale method based on asymptotic expansion homogenization (AEH) is developed to compute minimum energy configurations of ensembles of atoms at the fine length scale and the corresponding mechanical response of the material at the coarse length scale. This multiscale theory explicitly captures heterogeneity in microscopic atomic motion in crystalline materials, attributed, for example, to the presence of various point and line lattice defects. The formulation accounts for large deformations of nominally hyperelastic, monocrystalline solids. Unit cell calculations are performed to determine minimum energy configurations of ensembles of atoms of body-centered cubic tungsten in the presence of periodic arrays of vacancies and screw dislocations of line orientations [111] or [100]. Results of the theory and numerical implementation are verified versus molecular statics calculations based on conjugate gradient minimization (CGM) and are also compared with predictions from the local Cauchy-Born rule. For vacancy defects, the AEH method predicts the lowest system energy among the three methods, while computed energies are comparable between AEH and CGM for screw dislocations. Computed strain energies and defect energies (e.g., energies arising from local internal stresses and strains near defects) are used to construct and evaluate continuum energy functions for defective crystals parameterized via the vacancy density, the dislocation density tensor, and the generally incompatible lattice deformation gradient. For crystals with vacancies, a defect energy increasing linearly with vacancy density and applied elastic deformation is suggested, while for crystals with screw dislocations, a defect energy linearly dependent on the dislocation density tensor appears more appropriate than the quadratic dependency often encountered in the continuum plasticity literature.
机译:提出了一种基于渐进膨胀均质化(AEH)的多长度尺度方法,以在精细长度尺度下计算原子团簇的最小能量构型,并在粗糙长度尺度下计算材料的相应机械响应。这种多尺度理论明确地捕获了晶体材料在微观原子运动中的异质性,这归因于例如各种点和线晶格缺陷的存在。该配方解决了名义上超弹性的单晶固体的大变形。在存在周期性的空位排列和线取向[111]或[100]的螺钉错位的情况下,进行晶胞计算以确定体心立方钨原子团的最小能量构型。理论和数值实现的结果相对于基于共轭梯度最小化(CGM)的分子静力学计算进行了验证,并且还与局部Cauchy-Born规则的预测进行了比较。对于空位缺陷,AEH方法可预测三种方法中最低的系统能量,而螺丝钉错位的计算能量在AEH和CGM之间是可比的。计算出的应变能和缺陷能(例如,由局部内应力和缺陷附近的应变产生的能量)用于构造和评估通过空位密度,位错密度张量和通常不兼容的晶格变形梯度参数化的缺陷晶体的连续谱能量函数。对于具有空位的晶体,建议缺陷能随空位密度和所施加的弹性变形而线性增加,而对于具有螺旋位错的晶体,线性地依赖于位错密度张量的缺陷能量似乎比在连续性可塑性中经常遇到的二次依赖性更合适。文献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号