首页> 外文学位 >A Multiscale Virtual Fabrication and Lattice Modeling Approach for the Fatigue Performance Prediction of Asphalt Concrete.
【24h】

A Multiscale Virtual Fabrication and Lattice Modeling Approach for the Fatigue Performance Prediction of Asphalt Concrete.

机译:沥青混凝土疲劳性能的多尺度虚拟制造与晶格建模方法。

获取原文
获取原文并翻译 | 示例

摘要

Predicting the ultimate performance of asphalt concrete under realistic loading conditions is the main key to developing better-performing materials, designing long-lasting pavements, and performing reliable lifecycle analysis for pavements. The fatigue performance of asphalt concrete depends on the mechanical properties of the constituent materials, namely asphalt binder and aggregate. This dependent link between performance and mechanical properties is extremely complex, and experimental techniques often are used to try to characterize the performance of hot mix asphalt. However, given the seemingly uncountable number of mixture designs and loading conditions, it is simply not economical to try to understand and characterize the material behavior solely by experimentation. It is well known that analytical and computational modeling methods can be combined with experimental techniques to reduce the costs associated with understanding and characterizing the mechanical behavior of the constituent materials.;This study aims to develop a multiscale micromechanical lattice-based model to predict cracking in asphalt concrete using component material properties. The proposed algorithm, while capturing different phenomena for different scales, also minimizes the need for laboratory experiments. The developed methodology builds on a previously developed lattice model and the viscoelastic continuum damage model to link the component material properties to the mixture fatigue performance. The resulting lattice model is applied to predict the dynamic modulus mastercurves for different scales. A framework for capturing the so-called structuralization effects is introduced that significantly improves the accuracy of the modulus prediction. Furthermore, air voids are added to the model to help capture this important micromechanical feature that affects the fatigue performance of asphalt concrete as well as the modulus value. The effects of rate dependency are captured by implementing the viscoelastic fracture criterion. In the end, an efficient cyclic loading framework is developed to evaluate the damage accumulation in the material that is caused by long-sustained cyclic loads.
机译:预测实际载荷条件下沥青混凝土的极限性能是开发性能更好的材料,设计长效路面并进行可靠的生命周期分析的关键。沥青混凝土的疲劳性能取决于组成材料(即沥青粘合剂和骨料)的机械性能。性能和机械性能之间的这种相互依赖的联系极其复杂,经常使用实验技术来尝试表征热拌沥青的性能。但是,鉴于混合物设计和装载条件的数量似乎不可计数,仅尝试通过实验来了解和表征材料的性能根本不经济。众所周知,分析和计算建模方法可以与实验技术相结合,以减少与理解和表征组成材料的机械行为相关的成本。;本研究旨在建立一种基于多尺度微机械晶格的模型来预测裂纹沥青混凝土利用成分材料的性能。所提出的算法在捕获不同规模的不同现象的同时,还最大限度地减少了实验室实验的需要。所开发的方法建立在先前开发的晶格模型和粘弹性连续体损伤模型的基础上,以将组件的材料特性与混合物的疲劳性能联系起来。将所得的晶格模型应用于预测不同比例的动态模量主曲线。引入了用于捕获所谓的结构化效果的框架,该框架显着提高了模量预测的准确性。此外,在模型中添加了空隙,以帮助捕获影响沥青混凝土疲劳性能以及模量值的这一重要的微机械特征。通过执行粘弹性断裂准则可以捕获速率依赖性的影响。最后,开发了一种有效的循环载荷框架来评估由长期承受的循环载荷引起的材料中的损伤累积。

著录项

  • 作者

    Dehghan Banadaki, Arash.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Civil engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号