首页> 外文期刊>International journal of multiscale computational engineering >MULTISCALE FINITE ELEMENT METHOD FOR A HIGHLY EFFICIENT COUPLING ANALYSIS OF HETEROGENEOUS MAGNETO-ELECTRO-ELASTIC MEDIA
【24h】

MULTISCALE FINITE ELEMENT METHOD FOR A HIGHLY EFFICIENT COUPLING ANALYSIS OF HETEROGENEOUS MAGNETO-ELECTRO-ELASTIC MEDIA

机译:异质磁电弹性介质高效耦合分析的多尺度有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an efficient multiscale computational method is presented for the coupling field analysis of heterogeneous magneto-electro-elastic media. In this method, the displacement, electric, and magnetic potential multiscale base functions that contain the coupling effects between different physical fields are firstly constructed. By virtue of these numerical base functions, the effective material properties of the heterogeneous media could be reflected to the macroscopic scale. Thus, a single heterogeneous magneto-electro-elastic unit cell can be equivalent into a coarse element and the original multiphysics coupling boundary value problem could be solved on the macroscopic scale directly, which will save a significant amount of computing time and resources. According to the macroscopic solutions, the microscopic mechanical, electrical, and magnetic responses can be further recovered by downscaling computation using the above constructed multiscale base functions. Finally, several numerical examples are carried out to illustrate the effectiveness and correctness of the proposed multiscale method. The comparison between the present results on the macroscopic coarse-scale mesh and those calculated by the standard FEM on the microscopic fine -scale mesh indicates that the proposed multiscale method not only can provide accurate coupling responses of heterogeneous electro-magneto-elastic media but also has high computational efficiency.
机译:本文提出了一种有效的多尺度计算方法,用于非均质磁电弹性介质的耦合场分析。在这种方法中,首先构造了包含不同物理场之间耦合效应的位移,电势和磁势多尺度基函数。通过这些数值基函数,可以将非均质介质的有效材料特性反映到宏观尺度上。因此,单个异质磁电弹性单元可以等效为一个粗单元,并且可以直接在宏观尺度上解决原始的多物理场耦合边值问题,这将节省大量的计算时间和资源。根据宏观解决方案,可以使用上述构造的多尺度基函数通过按比例缩小计算来进一步恢复微观的机械,电和磁响应。最后,通过几个数值例子说明了所提出的多尺度方法的有效性和正确性。将当前在宏观粗尺度网格上的结果与通过标准有限元在微观精细尺度网格上计算的结果进行比较,表明所提出的多尺度方法不仅可以提供非均质电磁弹性介质的准确耦合响应,而且还可以提供具有很高的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号