首页> 外文期刊>International Journal of Modelling, Identification and Control >Vision-based neuro-fuzzy control of weld penetration in gas tungsten arc welding of thin sheets
【24h】

Vision-based neuro-fuzzy control of weld penetration in gas tungsten arc welding of thin sheets

机译:基于视觉的神经模糊控制薄板钨极氩弧焊焊接熔深

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a vision-based neuro-fuzzy system to control the weld joint penetration in Gas Tungsten Arc Welding (GTAW) of thin sheets. To this end, a camera equipped with a specially designed composite light-filter is used to observe the weld pool from the topside of the workpiece so that comparatively distinct images of the weld pool are obtained. As the Backside weld Width (BW) reflects the degree of the weld joint penetration, a model describing the relationship between the weld pool surface geometrical parameters (which can be extracted from the weld pool images) and the backside weld width is constructed. A neuro-fuzzy controller and a learning algorithm are developed to address dynamic and non-linear characteristics of the welding process. The controller can learn fuzzy rules and adjust the fuzzy rules with the variation of welding conditions automatically. Simulation and control tests demonstrated the effectiveness of the developed control system.
机译:本文开发了一种基于视觉的神经模糊系统,以控制薄钢板的钨极氩弧焊(GTAW)中的焊缝熔深。为此,使用配备有专门设计的复合滤光镜的摄像机从工件的顶部观察焊缝,从而获得焊缝的相对不同的图像。由于背面焊缝宽度(BW)反映了焊缝熔深的程度,因此构建了一个模型,该模型描述了焊缝表面几何参数(可以从焊缝图像中提取)与背面焊缝宽度之间的关系。开发了神经模糊控制器和学习算法来解决焊接过程的动态和非线性特征。控制器可以学习模糊规则,并根据焊接条件的变化自动调整模糊规则。仿真和控制测试证明了开发的控制系统的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号