...
首页> 外文期刊>International journal of impact engineering >From aerospace to offshore: Bridging the numerical simulation gaps-Simulation advancements for fluid structure interaction problems
【24h】

From aerospace to offshore: Bridging the numerical simulation gaps-Simulation advancements for fluid structure interaction problems

机译:从航空航天到海洋:弥合数值模拟的空白-流体结构相互作用问题的模拟进展

获取原文
获取原文并翻译 | 示例

摘要

This paper reviews the development and application of numerical methods to structural hydrodynamic loading. Fluid-structure interaction is complex, as the ideal code must be able to handle non-linearities, predict thin walled structural collapse (accumulation of plasticity, damage and failure), in addition to capturing the physical response of water (cavitation, suction, and aeration). No single numerical method is able to do all efficiently. Originally developed for aerospace problems, the Crashworthiness, Impacts and Structural Mechanics Group (CISM) at Cranfield University has applied its coupled FE-SPH capability to both Aerospace and Offshore engineering problems. This paper is split into several parts. First, an overview of previous analytical, experimental and numerical studies into water impact research will be provided to understand the different structural collapse mechanisms between hard and water surfaces. This research provided the framework for a coupled Finite Element-Smooth Particle Hydrodynamic (FE-SPH) approach, where key principles will be reviewed and functionally demonstrated through progressively complex offshore examples, including tethered buoys and green water loading on ship superstructures. Limitations of a coupled FE-SPH code will be presented by considering aircraft ditching through a Cranfield co-ordinated European FP7 project, SMAES (SMart Aircraft in Emergency Situations). For ditching certification, allowances are made for "probable" structural damage, which is where developments in numerical methods are required. Equally applicable to Offshore, ditching places considerable demands on water modelling due to deficiencies in modelling flow phenomena such as air cushioning, cavitation, suction and ventilation effects. These issues will be explored in order to provide a roadmap for future methods development, which will benefit both Aerospace and Offshore communities.
机译:本文综述了数值方法在结构动水荷载研究中的发展和应用。流体与结构的相互作用非常复杂,因为理想的代码必须能够处理非线性,预测薄壁结构的塌陷(可塑性,破坏和破坏的累积),以及捕获水的物理响应(空化,吸力和水流)。通风)。没有单一的数值方法能够有效地完成所有工作。克兰菲尔德大学的耐撞性,冲击和结构力学小组(CISM)最初是为解决航空航天问题而开发的,现已将其FE-SPH耦合功能应用于航空航天和海洋工程问题。本文分为几个部分。首先,将提供对水影响研究的先前分析,实验和数值研究的概述,以了解硬水面之间的不同结构坍塌机制。这项研究为有限元-光滑颗粒流体动力耦合(FE-SPH)方法提供了框架,该方法将通过逐步复杂的海上实例(包括系留浮标和船舶上部结构上的绿水负荷)对关键原理进行回顾和功能演示。考虑到通过Cranfield协调的欧洲FP7项目SMAES(紧急情况下的Smart飞机)进行的飞机降落,将给出耦合的FE-SPH代码的局限性。对于沟渠认证,应考虑“可能的”结构损坏,这是需要数字方法发展的地方。同样适用于近海,由于对气流现象(如空气缓冲,气蚀,吸力和通风效果)进行建模时,沟渠对水的建模提出了相当高的要求。将探讨这些问题,以便为将来的方法开发提供路线图,这将使航空航天和近海社区受益。

著录项

  • 来源
    《International journal of impact engineering 》 |2013年第11期| 48-63| 共16页
  • 作者单位

    Crashworthiness, Impacts and Structural Mechanics Group, School of Engineering, Cranfield University, Beds MK43 0AL, UK;

    Crashworthiness, Impacts and Structural Mechanics Group, School of Engineering, Cranfield University, Beds MK43 0AL, UK;

    Crashworthiness, Impacts and Structural Mechanics Group, School of Engineering, Cranfield University, Beds MK43 0AL, UK;

    Crashworthiness, Impacts and Structural Mechanics Group, School of Engineering, Cranfield University, Beds MK43 0AL, UK;

    Crashworthiness, Impacts and Structural Mechanics Group, School of Engineering, Cranfield University, Beds MK43 0AL, UK;

    Crashworthiness, Impacts and Structural Mechanics Group, School of Engineering, Cranfield University, Beds MK43 0AL, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Coupled FE-SPH; Water modelling; Cavitation; Ditching; Fluid-structure interaction;

    机译:耦合FE-SPH水模型;空化开沟流固耦合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号