首页> 外文期刊>International journal of grid and high performance computing >Effectiveness of Normalization Over Processing of Textual Data Using Hybrid Approach Sentiment Analysis
【24h】

Effectiveness of Normalization Over Processing of Textual Data Using Hybrid Approach Sentiment Analysis

机译:使用混合方法情绪分析对文本数据处理归一化的有效性

获取原文
获取原文并翻译 | 示例

摘要

Various natural language processing tasks are carried out to feed into computerized decision support systems. Among these, sentiment analysis is gaining more attention. The majority of sentiment analysis relies on the social media content. This web content is highly un-normalized in nature. This hinders the performance of decision support system. To enhance the performance, it is required to process data efficiently. This article proposes a novel method of normalization of web data during the pre-processing phase. It is aimed to get better results for different natural language processing tasks. This research applies this technique on data for sentiment analysis. Performance of different learning models is analysed using precision, recall, f-measure, fallout for normalize and un-normalize sentiment analysis. Results shows after normalization, some documents shift their polarity i.e. negative to positive. Experimental results show normalized data processing outperforms un-normalized data processing with better accuracy.
机译:进行各种自然语言处理任务以进入计算机化决策支持系统。其中,情绪分析正在增加更多的关注。大多数情绪分析依赖于社交媒体内容。此Web内容在自然界中高度归一化。这会阻碍决策支持系统的表现。为了增强性能,需要有效地处理数据。本文提出了在预处理阶段期间的Web数据标准化的新方法。它旨在为不同的自然语言处理任务获得更好的结果。本研究适用于这种技术对情绪分析的数据。使用精度,召回,F测量,归一化和未正常化情感分析进行分析不同学习模型的性能。结果显示在归一化之后,有些文件将它们的极性移位为正为正。实验结果表明,归一化数据处理优于未经精度的未归一下数据处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号