【24h】

Workload Prediction on Google Cluster Trace

机译:Google Cluster Trace上的工作量预测

获取原文
获取原文并翻译 | 示例

摘要

Workload prediction in cloud systems is an important task to ensure maximum resource utilization. So, a cloud system requires efficient resource allocation to minimize the resource cost while maximizing the profit. One optimal strategy for efficient resource utilization is to timely allocate resources according to the need of applications. The important precondition of this strategy is obtaining future workload information in advance. The main focus of this analysis is to design and compare different forecasting models to predict future workload. This paper develops model through Adaptive Neuro Fuzzy Inference System (ANFIS), Non-linear.Autoregressive Network with Exogenous inputs (NARX), Autoregressive Integrated Moving Average (ARIMA), and Support Vector Regression (SVR). Public trace data (workload trace version Ⅱ) which is made available by Google were used to verify the accuracy, stability and adaptability of different models. Finally, this paper compares these prediction models to find out the model which ensures better prediction. Performance of forecasting techniques is measured by some popular statistical metric, i.e.. Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Sum of Squared Error (SSE), Normalized Mean Squared Error (NMSE). The experimental result indicates that NARX model outperforms other models, e.g., AN FIS, ARIMA, and SVR.
机译:云系统中的工作量预测是确保最大程度地利用资源的重要任务。因此,云系统需要有效的资源分配以最小化资源成本,同时最大化利润。有效利用资源的一种最佳策略是根据应用程序的需要及时分配资源。该策略的重要前提是提前获取将来的工作负载信息。该分析的主要重点是设计和比较不同的预测模型,以预测未来的工作量。本文通过自适应神经模糊推理系统(ANFIS),非线性,带有外来输入的自回归网络(NARX),自回归综合移动平均(ARIMA)和支持向量回归(SVR)开发模型。使用Google提供的公共跟踪数据(工作量跟踪版本Ⅱ)来验证不同模型的准确性,稳定性和适应性。最后,本文将这些预测模型进行比较,以找出可确保更好预测的模型。预测技术的性能是通过一些流行的统计指标来衡量的,例如,均方根误差(RMSE),平均绝对误差(MAE),平均绝对百分比误差(MAPE),平方误差总和(SSE),归一化均方误差( NMSE)。实验结果表明,NARX模型优于其他模型,例如AN FIS,ARIMA和SVR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号