首页> 外文期刊>International journal of data mining, modelling and management >Convolutional neural network with stacked autoencoders for predicting drug-target interaction and binding affinity
【24h】

Convolutional neural network with stacked autoencoders for predicting drug-target interaction and binding affinity

机译:卷积神经网络,具有堆叠自动化器,用于预测药物 - 目标相互作用和结合亲和力

获取原文
获取原文并翻译 | 示例

摘要

The prediction of novel drug-target interactions (DTIs) is critically important for drug repositioning, as it can lead the researchers to find new indications for existing drugs and to reduce the cost and time of the de novo drug development process. In order to explore new ways for this innovation, we have proposed two novel methods named SCA-DTIs and SCA-DTA, respectively to predict both drug-target interactions and drug-target binding affinities (DTAs) based on convolutional neural network (CNN) with stacked autoencoders (SAE). Initialising a CNN's weights with filters of trained stacked autoencoders yields to superior performance. Moreover, for boosting the performance of the DTIs prediction, we propose a new method called RNDTIs to generate reliable negative samples. Tests on different benchmark datasets show that the proposed method can achieve an excellent prediction performance with an accuracy of more than 99%. These results demonstrate the strength of the proposed model potential for DTIs and DTA prediction, thereby improving the drug repurposing process.
机译:对新药 - 靶靶相互作用(DTI)的预测对于药物重新定位至关重要,因为它可以引导研究人员找到现有药物的新迹象,并降低De Novo药物开发过程的成本和时间。为了探索这种创新的新方法,我们提出了两种名为SCA-DTI和SCA-DTA的新方法,以预测基于卷积神经网络(CNN)的药物 - 靶靶相互作用和药物靶标结合亲和力(DTA)使用堆叠的autoencoders(SAE)。通过训练堆叠的AutoEncoders的过滤器初始化CNN的权重,产生优越的性能。此外,为了提高DTI预测的性能,我们提出了一种称为RNDTIS的新方法,以产生可靠的负样本。在不同的基准数据集上测试表明,该方法可以实现优异的预测性能,精度超过99%。这些结果证明了DTIS和DTA预测的所提出的模型电位的强度,从而改善了药物重新施加过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号