首页> 外文期刊>International journal of computing science and mathematics >Power control of wind energy conversion system under multiple operating regimes with deep residual recurrent neural network: theory and experiment
【24h】

Power control of wind energy conversion system under multiple operating regimes with deep residual recurrent neural network: theory and experiment

机译:深度残差递归神经网络的多种运行方式下风能转换系统的功率控制:理论与实验

获取原文
获取原文并翻译 | 示例

摘要

This paper makes a research for the speed control of wind turbine system under multiple operating regimes, which also studied the sleep residual recurrent neural network method in this work. We aim at designing deep residual recurrent neural network robust controllers, which guarantee the existence of the multiple regime system poles in some predefined zone and wind speed precise tracking. Moreover, the feedback gains which guarantee desired speed tracking performance are obtained by solving the Lyapunov stability functions. The results are applied to a directly driven wind energy conversion experiment systems and the numerical experiment, comparing with the existing results, shows the satisfactory performance of the proposed method.
机译:本文针对多种工况下的风力发电系统的速度控制进行了研究,并在此工作中研究了睡眠残差递归神经网络方法。我们旨在设计深度残差递归神经网络鲁棒控制器,以保证在某些预定义区域中存在多态系统极点并精确跟踪风速。此外,通过解决李雅普诺夫稳定性函数,可以获得保证所需速度跟踪性能的反馈增益。将该结果应用于直接驱动的风能转换实验系统,并将数值实验与现有结果进行比较,证明了该方法的令人满意的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号