首页> 外文期刊>International journal of computer vision and iImage processing >Image-Based Goat Breed Identification and Localization Using Deep Learning
【24h】

Image-Based Goat Breed Identification and Localization Using Deep Learning

机译:基于图像的山羊养殖和本地化使用深度学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper an attempt has been made to identify six different goat breeds from pure breed goat images. The images of goat breeds have been captured from different organized registered goat farms in India, and almost two thousand digital images of individual goats were captured in restricted (to get similar image background) and unrestricted (natural) environments without imposing stress to animals. A pre-trained deep learning-based object detection model called Faster R-CNN has been fine-tuned by using transfer-learning on the acquired images for automatic classification and localization of goat breeds. This fine-tuned model is able to locate the goat (localize) and classify (identify) its breed in the image. The Pascal VOC object detection evaluation metrics have been used to evaluate this model. Finally, comparison has been made with prediction accuracies of different technologies used for different animal breed identification.
机译:在本文中,已经尝试从纯品种山羊图像中识别六种不同的山羊品种。山羊品种的图像已从印度的不同组织登记的山羊农场捕获,并且在限制(以获得类似的图像背景)和不受限制的(自然)环境的情况下捕获了几乎两千个数字图像,而不会对动物施加压力。通过在获取的图像上使用转移学习进行了微调R-CNN的预训练深度学习的对象检测模型,以获得山羊品种的自动分类和本地化。这种微调模型能够找到山羊(本地化)并在图像中进行分类(识别)其品种。 Pascal VOC对象检测评估度量已被用于评估该模型。最后,已经通过用于不同的动物品种鉴定的不同技术的预测精度来进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号