首页> 外文期刊>Expert systems with applications >Combining deep learning with geometric features for image-based localization in the Gastrointestinal tract
【24h】

Combining deep learning with geometric features for image-based localization in the Gastrointestinal tract

机译:结合深度学习与几何特征在胃肠道中基于图像的定位的几何特征

获取原文
获取原文并翻译 | 示例

摘要

Tracking monocular colonoscope in the GastroIntestinal (GI) tract is challenging as the obtained images suffer from deformation, blurred textures, and significant changes in appearance. These drawbacks greatly restrict the tracking ability of conventional geometry-based methods, which are heavily dependent on the performance of corner points extraction from the image. Even though end-to-end Deep Learning (DL) can overcome these issues, limited labeling data is a roadblock to the state-of-the-art DL-based method. To handle these drawbacks, we propose a novel approach to combine the DL-based method with the traditional geometry-based approach to achieve better localization with small training data. In this work, a DL network is trained with the images of the pre-operative endoscopy/colonoscopy. Siamese architecture is introduced to perform the zone labeling of the image based on the anatomical segmentation with expert knowledge. Then, using the image in the therapeutic intervention, our method predicts the 6 degrees of freedom scope pose and recover geometric reference to the images from the pre-operative endoscopy/colonoscopy. The DL network predicts the zone of the testing image, and the pre-generated triangulated map points within the zone in the training set are registered with the bundle adjustment algorithm. The proposed hybrid method is tested on the synthetic data sets and the real-world in-vivo data sets. Further, the results achieved through various experiments validate that the proposed method outperforms traditional geometry-based only or DL-based only localization techniques.
机译:随着所获得的图像遭受变形,模糊的纹理和外观显着变化,跟踪单眼肠球镜具有挑战性挑战。这些缺点大大限制了传统基于几何的方法的跟踪能力,这严重依赖于从图像中提取的角点的性能。尽管端到端的深度学习(DL)可以克服这些问题,但是有限的标签数据是基于最先进的DL的方法的障碍。为了处理这些缺点,我们提出了一种新的方法来将基于DL的方法与传统的基于几何方法结合起来,以实现具有小型训练数据的更好本地化。在这项工作中,DL网络接受了预术内窥镜检查/结肠镜检查的图像。介绍了暹罗架构,以基于具有专家知识的解剖分割来执行图像的区域标记。然后,使用治疗性干预中的图像,我们的方法预测了从预操作内窥镜检查/结肠镜检查到图像的6度的自由度姿势并恢复几何参考。 DL网络预测测试图像的区域,并且在训练集中的区域内的预生成的三角形地图点以束调节算法注册。所提出的混合方法在合成数据集和现实世界内数据集上进行测试。此外,通过各种实验实现的结果验证了所提出的方法优于基于传统的几何形状或基于DL的本地化技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号