首页> 外文期刊>International Journal of Computer Systems Science & Engineering >Harmony and bio inspired harmony search optimization algorithms for feature selection in classification
【24h】

Harmony and bio inspired harmony search optimization algorithms for feature selection in classification

机译:用于分类中特征选择的和声和生物启发式和声搜索优化算法

获取原文
获取原文并翻译 | 示例

摘要

Today, constant and rapid changes in information and communication technologies offer unanimous access to vast amounts of information and make an exponential increase of the amount of data available online. High dimensionality has always been a great challenge for all learning algorithm and "curse of dimensionality" has been studied for a long time. The high-dimensional feature vectors often impose a high computational cost when classification is performed. Feature selection plays major role as a pre-processing technique in reducing the dimensionality of the datasets in the fields of data analysis and data mining applications. This paper presents two music inspired novel Harmony Search optimization algorithms, HS-1-NN and Bio-HS-1-NN, for wrapper feature selection where Bio-HS-1-NN is augmented with food source exploitation behaviour of honey bees, which improves the members of the Harmony memory based on their fitness values and hence speeds up the convergence speed of the search. 1-NN classifier has been used to evaluate the quality of the solutions. The performance of the proposed approaches has been analysed by experiments with various real-world data sets and the proposed approaches, exhibited better performance than other methods in terms of classification accuracy and convergence rate.
机译:如今,信息和通信技术的不断和快速变化使人们可以一致地访问大量信息,并使在线可用数据量呈指数级增长。高维一直是所有学习算法的巨大挑战,“维数的诅咒”已经研究了很长时间。当执行分类时,高维特征向量通常会带来很高的计算成本。在降低数据分析和数据挖掘应用领域中数据集的维数方面,特征选择作为一种预处理技术发挥着重要作用。本文介绍了两种音乐启发式的新颖和谐搜索优化算法HS-1-NN和Bio-HS-1-NN,用于包装特征选择,其中Bio-HS-1-NN通过蜜蜂的食物来源开发行为得到了增强,根据适应度值改进和声记忆的成员,从而加快搜索的收敛速度。 1-NN分类器已用于评估解决方案的质量。通过对各种真实世界数据集的实验分析了所提出方法的性能,所提出的方法在分类准确性和收敛速度方面表现出比其他方法更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号