首页> 外文期刊>International journal of computer-supported collaborative learning >The ACODEA framework: Developing segmentation and classification schemes for fully automatic analysis of online discussions
【24h】

The ACODEA framework: Developing segmentation and classification schemes for fully automatic analysis of online discussions

机译:ACODEA框架:开发用于自动分析在线讨论的细分和分类方案

获取原文
获取原文并翻译 | 示例

摘要

Research related to online discussions frequently faces the problem of analyzing huge corpora. Natural Language Processing (NLP) technologies may allow automating this analysis. However, the state-of-the-art in machine learning and text mining approaches yields models that do not transfer well between corpora related to different topics. Also, segmenting is a necessary step, but frequently, trained models are very sensitive to the particulars of the segmentation that was used when the model was trained. Therefore, in prior published research on text classification in a CSCL context, the data was segmented by hand. We discuss work towards overcoming these challenges. We present a framework for developing coding schemes optimized for automatic segmentation and context-independent coding that builds on this segmentation. The key idea is to extract the semantic and syntactic features of each single word by using the techniques of part-of-speech tagging and named-entity recognition before the raw data can be segmented and classified. Our results show that the coding on the micro-argumentation dimension can be fully automated. Finally, we discuss how fully automated analysis can enable context-sensitive support for collaborative learning.
机译:与在线讨论相关的研究经常面临分析大型语料库的问题。自然语言处理(NLP)技术可能允许自动化此分析。但是,最新的机器学习和文本挖掘方法产生的模型无法在与不同主题相关的语料库之间很好地转换。同样,分割是必不可少的步骤,但是训练有素的模型通常对训练模型时使用的分割细节非常敏感。因此,在先前发表的关于CSCL上下文中文本分类的研究中,数据是手工分割的。我们讨论了克服这些挑战的工作。我们提出了一个框架,用于开发针对自动分段和基于此分段的上下文独立编码进行优化的编码方案。关键思想是在对原始数据进行分割和分类之前,通过使用词性标记和命名实体识别技术来提取每个单词的语义和句法特征。我们的结果表明,微参数维上的编码可以完全自动化。最后,我们讨论了全自动分析如何使上下文敏感的协作学习支持成为可能。

著录项

  • 来源
  • 作者单位

    Ludwig-Maximilians-Univcrsitaet Muenchcn, Empirische Paedagogik und Paedagogische Psychologic, Lcopoldstraβc 13, 80802 Munich, Germany;

    Ludwig-Maximilians-Univcrsitaet Muenchcn, Empirische Paedagogik und Paedagogische Psychologic, Lcopoldstraβc 13, 80802 Munich, Germany,Univcrsitaet Koblenz-Landau, Instirut Erzichungswissenschaft/Philosophie, Buergcrstrassc 23, 76829 Landau, Germany;

    Language Technologies Institute, Carnegie Mellon University, 5000 Forbes Avenue, 15213 Pittsburgh, PA, USA;

    Language Technologies Institute, Carnegie Mellon University, 5000 Forbes Avenue, 15213 Pittsburgh, PA, USA;

    Ludwig-Maximilians-Univcrsitaet Muenchcn, Empirische Paedagogik und Paedagogische Psychologic, Lcopoldstraβc 13, 80802 Munich, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    online discussion; automatic content analysis; text classification;

    机译:在线讨论;自动内容分析;文字分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号