首页> 外文期刊>International journal of computer mathematics >The inverse solution of the coupled nonlinear reaction-diffusion equations by the Haar wavelets
【24h】

The inverse solution of the coupled nonlinear reaction-diffusion equations by the Haar wavelets

机译:Haar小波耦合非线性反应扩散方程的逆解

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a numerical method is proposed for the numerical solution of the coupled nonlinear reaction-diffusion equations with suitable initial and boundary conditions by using the Haar wavelet method to determine the unknown boundary conditions. More precisely, we apply the Haar wavelet method for discretizing the space derivatives and then use a quasilinearization technique to linearize the nonlinear term in the equations. This process generates an ill-posed linear system of equations. Hence, to regularize the resultant ill-posed linear system of equations, we employ the Tikhonov regularization method to obtain a stable numerical approximation to the solution. We also prove the convergence of order one (i.e. O(1/M)) and discuss the error estimation and stability computation for the proposed method. Finally, we report some numerical results which in compared with the finite difference method and the radial basis function method show the efficiency and capability of the proposed method.
机译:本文采用Haar小波方法确定未知边界条件,提出了一种适用于初始条件和边界条件的非线性反应扩散方程耦合方程数值解的数值方法。更准确地说,我们应用Haar小波方法离散化空间导数,然后使用准线性化技术来线性化方程中的非线性项。此过程将生成一个不适定的线性方程组。因此,为了正规化所得的不适定线性方程组,我们采用Tikhonov正规化方法来获得该解的稳定数值近似。我们还证明了一阶(即O(1 / M))的收敛性,并讨论了该方法的误差估计和稳定性计算。最后,我们报告了一些数值结果,这些结果与有限差分法和径向基函数法相比证明了该方法的有效性和能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号