首页> 外文期刊>International journal of computational vision and robotics >A hybrid differential evolution algorithm for parameter tuning of evolving spiking neural network
【24h】

A hybrid differential evolution algorithm for parameter tuning of evolving spiking neural network

机译:进化尖峰神经网络参数调整的混合差分进化算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, differential evolution (DE) has been utilised to solve the problem of tuning the parameters of evolving spiking neural network (ESNN) manually. As ESNN is sensitive to its parameters as other models, optimal integration of parameters leads to better classification accuracy. A hybrid differential evolution for parameter tuning of evolving spiking neural network (DEPT-ESNN) is presented for parameter optimisation for determining the optimal number of evolving spiking neural network (ESNN) parameters: modulation factor (Mod), similarity factor (Sim) and threshold factor (C). The best values of parameters are adaptively selected by differential evolution (DE) to avoid selecting suitable values for a particular problem by trial-and-error approach. Several standard datasets from UCI machine learning are used for evaluating the performance of this hybrid model. It has been found that the classification accuracy and other performance measures can be increased by using hybrid method with differential evolution DEPT_ESNN.
机译:在本文中,差分进化(DE)已被用来解决手动调整进化尖峰神经网络(ESNN)参数的问题。由于ESNN与其他模型一样对参数敏感,因此参数的最佳集成可带来更好的分类准确性。为确定尖峰神经网络(ESNN)参数的最佳数量,提出了用于参数优化的混合微分进化,用于优化尖峰神经网络(DEPT-ESNN)参数:调制因子(Mod),相似因子(Sim)和阈值因素(C)。通过微分进化(DE)自适应地选择参数的最佳值,以避免通过反复试验方法为特定问题选择合适的值。来自UCI机器学习的几个标准数据集用于评估此混合模型的性能。已经发现,使用具有差分进化DEPT_ESNN的混合方法可以提高分类精度和其他性能指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号