首页> 外文期刊>International journal of computational vision and robotics >Odia character recognition using backpropagation network with binary features
【24h】

Odia character recognition using backpropagation network with binary features

机译:使用具有二进制功能的反向传播网络进行Odia字符识别

获取原文
获取原文并翻译 | 示例

摘要

Automatic recognition of printed characters has been an area of active research since last few decades. Though considerable work has been reported for Latin, CJK, and many other popular languages, but a few works has been reported for many Indian languages. In this work, we propose a complete model with effective techniques to recognise printed offline Odia language characters. First we develop a technique to segment the image to extract characters, and then features of these segmented characters are extracted using a binary feature extraction, as well as structural feature extraction. Finally, these extracted features are used to classify character symbols using a modified backpropagation network. In each of these phases it is found that the proposed technique outperforms existing techniques and yields high accuracy rate. Further, this work has tried to include all the possible characters (approx. 2,500 characters) in training/testing unlike other works, where a small set of characters are normally considered for testing.
机译:自最近几十年来,打印字符的自动识别一直是活跃的研究领域。尽管已经为拉丁文,中日韩文和许多其他流行语言报道了大量工作,但对于许多印度语言也报道了一些作品。在这项工作中,我们提出了一个具有有效技术的完整模型,该模型可以识别印刷的离线Odia语言字符。首先,我们开发了一种对图像进行分割以提取字符的技术,然后使用二进制特征提取以及结构特征提取来提取这些分割字符的特征。最后,这些提取的特征用于使用修改后的反向传播网络对字符符号进行分类。在这些阶段的每一个阶段中,都发现所提出的技术优于现有技术,并且产生了很高的准确率。此外,与其他作品不同,该作品试图在训练/测试中包括所有可能的字符(约2500个字符),而其他作品通常只考虑一小部分字符进行测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号