首页> 外文期刊>International journal of computational vision and robotics >Occlusion handling strategies for multiple moving object classification
【24h】

Occlusion handling strategies for multiple moving object classification

机译:多运动物体分类的遮挡处理策略

获取原文
获取原文并翻译 | 示例

摘要

A framework has been designed for detection and classification of multiple moving vehicles. Background subtraction is used for detection of multiple moving objects like vehicles using Gaussian mixture model (MOG). Classification for multiple moving vehicles using K-nearest neighbour is done based on different features in this research. The method used in this research also improves the value of accuracy and occlusion rate for multiple moving vehicles in video frames. In this paper, we also learn a single detector for different types of multiple moving vehicles such as buses, trucks, and cars. This detector uses a special kind of function that is known as occlusion metric function. The main goal of this research is to build a function that is used to calculate the performance of detector between number of false positives and hit rate in heavy traffic (high activity) and small traffic (low activity) region.
机译:设计了一种框架,用于检测和分类多辆行驶中的车辆。背景减法用于使用高斯混合模型(MOG)检测多个运动物体,例如车辆。基于本研究的不同特征,对使用K近邻的多辆运动车辆进行了分类。本研究中使用的方法还提高了视频帧中多个移动车辆的准确性和遮挡率的值。在本文中,我们还为单个不同类型的多种移动车辆(例如公共汽车,卡车和小汽车)学习了单个检测器。该检测器使用一种特殊的功能,称为遮挡度量功能。这项研究的主要目标是建立一个函数,用于计算在交通繁忙(高活动)和交通繁忙(低活动)区域中假阳性数和命中率之间的检测器性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号