首页> 外文期刊>International journal of computational vision and robotics >Video summarisation based on motion estimation using speeded up robust features
【24h】

Video summarisation based on motion estimation using speeded up robust features

机译:基于运动估计的视频摘要,使用加速的强大功能

获取原文
获取原文并翻译 | 示例

摘要

Video summarisation (VS) is a technique to extract keyframes from a video based on video contents. It provides user with a brief representation of video contents to semantically understand the video. This paper aims to present video summarisation based on motion between consecutive video frames. The motion between frames is represented by affine and homograph transformation. The video frames are represented by a set of speeded up robust features (SURF). The keyframes are extracted in a sequential manner by successively comparison with the previously declared keyframe based on motion. The validity of the proposed algorithms is demonstrated on videos from Internet, YouTube dataset and Open Video Project. The proposed work is evaluated by comparing it with different classical and state-of-the-art video summarisation methods reported in the literature. The experimental results and performance analysis validates the effectiveness and efficiency of the proposed algorithms.
机译:视频摘要(VS)是一种基于视频内容从视频中提取关键帧的技术。它为用户提供了视频内容的简短表示,以从语义上理解视频。本文旨在介绍基于连续视频帧之间运动的视频摘要。帧之间的运动由仿射和同形异义变换表示。视频帧由一组加速健壮功能(SURF)表示。通过基于运动与先前声明的关键帧进行连续比较,以顺序方式提取关键帧。互联网,YouTube数据集和Open Video Project上的视频证明了所提出算法的有效性。通过与文献中报道的不同的经典和最新视频摘要方法进行比较,对拟议工作进行了评估。实验结果和性能分析验证了所提算法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号