首页> 外文期刊>International journal of computational systems engineering >Myoelectric control of upper limb prostheses using linear discriminant analysis and multilayer perceptron neural network with back propagation algorithm
【24h】

Myoelectric control of upper limb prostheses using linear discriminant analysis and multilayer perceptron neural network with back propagation algorithm

机译:基于线性判别分析和带反向传播算法的多层感知器神经网络的上肢假肢肌电控制

获取原文
获取原文并翻译 | 示例

摘要

Electromyogram (EMG) signals or myoelectric signals (MESs) have two prominent areas in the field of biomedical instrumentation. EMG signals are primarily used to analyse the neuromuscular diseases such as myopathy and neuropathy. In addition, the EMG signal can be utilised in myoelectric control systems - where the external devices like upper limb prostheses, intelligent wheelchairs, and assistive robots can be controlled by acquiring surface EMG signals. The aim of present work is to obtain classification accuracy first by using linear discriminant analysis (LDA) classifier where principal component analysis (PCA) and uncorrelated linear discriminant analysis (ULDA) feature reduction techniques are used for upper limb prostheses control application. Next, the multilayer perceptron (MLP) neural network with back propagation algorithm is used to calculate the classification accuracy for upper limb prostheses control.
机译:肌电图(EMG)信号或肌电信号(MESs)在生物医学仪器领域具有两个突出的领域。 EMG信号主要用于分析神经肌肉疾病,例如肌病和神经病。此外,EMG信号可用于肌电控制系统-可以通过获取表面EMG信号来控制诸如上肢假肢,智能轮椅和辅助机器人之类的外部设备。当前工作的目的是首先通过使用线性判别分析(LDA)分类器获得分类精度,其中将主成分分析(PCA)和不相关的线性判别分析(ULDA)特征简化技术用于上肢假体控制应用。接下来,使用带有反向传播算法的多层感知器(MLP)神经网络来计算上肢假体控制的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号