首页> 外文期刊>International journal of computational linguistics and applications >Combining Textual and Visual Features to Identify Anomalous User-generated Content
【24h】

Combining Textual and Visual Features to Identify Anomalous User-generated Content

机译:结合文本和视觉功能来识别用户生成的异常内容

获取原文
获取原文并翻译 | 示例

摘要

Anomaly detection has extensive use in a wide variety of applications, such techniques aim to and patterns in data that do not conform to expected behavior. In this work we apply anomaly detection to the task of discovering anomalies from user-generated content of commercial product descriptions. While most of the other works in literature rely exclusively on textual features, we combine those textual descriptors with visual information extracted from the media resources associated with each product description. Given a large corpus of documents, the proposed system infers the key features describing the behavioral traits of expert users, and automatically reports whenever a newly generated description contains suspicious or low quality textual/visual elements. We prove that the joint use of textual and visual features helps in obtaining a robust detection model that can be employed in an enterprise environment to automatically mark suspicious descriptions for further manual inspection.
机译:异常检测在广泛的应用中得到了广泛的应用,这种技术的目的和模式是与预期行为不符的数据。在这项工作中,我们将异常检测应用于从用户生成的商业产品描述内容中发现异常的任务。尽管文献中的大多数其他作品仅依赖于文本特征,但我们将这些文本描述符与从与每个产品描述相关的媒体资源中提取的视觉信息结合在一起。给定大量文档,建议的系统会推断描述专家用户行为特征的关键特征,并在新生成的描述包含可疑或低质量的文本/视觉元素时自动报告。我们证明,文本和视觉功能的联合使用有助于获得可靠的检测模型,该模型可在企业环境中使用,以自动标记可疑描述,以进行进一步的手动检查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号