首页> 外文期刊>International journal of computational intelligence in bioinformatics and systems biology >Improved biomedical document retrieval system with PubMed term statistics and expansions
【24h】

Improved biomedical document retrieval system with PubMed term statistics and expansions

机译:具有PubMed术语统计和扩展功能的改进的生物医学文献检索系统

获取原文
获取原文并翻译 | 示例

摘要

Large biomedical abstract databases such as MEDLINE enable users to search for large bodies of biomedical knowledge quickly. In this study, we describe a new framework to improve the performance of MEDLINE document retrieval. We first analysed and built a normalized term frequency distributions for 1.8 million terms by sampling from 1,500,000 MEDLINE abstracts. Then, we developed a statistical model to identify significantly observed terms ('gists') in a document as additional document keywords to help improve document retrieval precisions. To improve document recalls, we integrated several biological ontologies that can expand user queries with semantically compatible terms. The framework was implemented in Oracle 10g.
机译:大型生物医学抽象数据库(例如MEDLINE)使用户能够快速搜索大量生物医学知识。在这项研究中,我们描述了一个新的框架来提高MEDLINE文档检索的性能。我们首先通过从1,500,000个MEDLINE摘要中进行采样来分析和构建了180万个词的归一化词频分布。然后,我们开发了一种统计模型,以将文档中显着观察到的术语(“要点”)识别为其他文档关键字,以帮助提高文档检索的准确性。为了提高文档的召回率,我们集成了几种生物本体,这些本体可以使用语义兼容的术语扩展用户查询。该框架是在Oracle 10g中实现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号