首页> 外文期刊>International journal of circuit theory and applications >A new approach for edge detection of noisy image based on CNN
【24h】

A new approach for edge detection of noisy image based on CNN

机译:基于CNN的噪声图像边缘检测新方法

获取原文
获取原文并翻译 | 示例

摘要

A new approach for edge detection of noisy image by cellular neural network (CNN) is proposed in this paper. In order to get the reasonable template, the statistical characteristics of image are utilized, and Gibbs image model is employed to describe the stochastic dependence of an edge pixel on its neighbourhood. Based on stochastic edge image models, edge detection of noisy image is equivalent to seeking a minimum of a cost function. If the template of CNN is designed carefully, the energy function can be mapped properly to the cost function of stochastic edge image model, then CNN can be used for seeking the minimum of cost function. Genetic algorithm is efficient in the field of optimization, and we also utilized this algorithm to get the correct form of template. The results of computer simulation confirm that the new approach is very effective. Furthermore, this result also confirms that we can design template for many different questions based on statistical image model, and the area of application of CNN will be widened.
机译:提出了一种新的基于神经网络的噪声图像边缘检测方法。为了获得合理的模板,利用图像的统计特性,并采用吉布斯图像模型描述边缘像素对其邻域的随机依赖性。基于随机边缘图像模型,噪声图像的边缘检测等同于寻求成本函数的最小值。如果精心设计CNN模板,则可以将能量函数正确映射到随机边缘图像模型的成本函数,然后可以使用CNN寻求成本函数的最小值。遗传算法在优化领域是有效的,我们还利用该算法来获取正确形式的模板。计算机仿真结果表明,该新方法非常有效。此外,该结果还证实了我们可以基于统计图像模型设计许多不同问题的模板,并且将扩大CNN的应用范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号