首页> 外文期刊>International Journal of Automation and Computing >Adaptive Tracking Control of Uncertain MIMO Nonlinear Systems with Time- varying Delays and Unmodeled Dynamics
【24h】

Adaptive Tracking Control of Uncertain MIMO Nonlinear Systems with Time- varying Delays and Unmodeled Dynamics

机译:具有不确定时滞和不确定性动力学的不确定MIMO非线性系统的自适应跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, adaptive neural tracking control is proposed based on radial basis function neural networks (RBFNNs) for a class of multi-input multi-output (MIMO) nonlinear systems with completely unknown control directions, unknown dynamic disturbances, unmodeled dynamics, and uncertainties with time-varying delay. Using the Nussbaum function properties, the unknown control directions are dealt with. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown upper bound functions of the time-varying delay uncertainties are compensated. The proposed control scheme does not need to calculate the integral of the delayed state functions. Using Young’s inequality and RBFNNs, the assumption of unmodeled dynamics is relaxed. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded.
机译:本文针对一类多输入多输出(MIMO)非线性系统,基于径向基函数神经网络(RBFNN)提出了一种自适应神经跟踪控制方法,该系统具有完全未知的控制方向,未知的动态扰动,未建模的动力学以及不确定性随时间变化的延迟。使用Nussbaum函数属性,可以处理未知的控制方向。通过构造适当的Lyapunov-Krasovskii泛函,可以补偿时变不确定性的未知上限函数。所提出的控制方案不需要计算延迟状态函数的积分。利用Young的不等式和RBFNN,可以放松对未建模动力学的假设。通过理论分析,证明了该闭环控制系统是半全局一致的最终有界的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号