首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >A SINGLE UPPER LIMB POSE ESTIMATION METHOD BASED ON THE IMPROVED STACKED HOURGLASS NETWORK
【24h】

A SINGLE UPPER LIMB POSE ESTIMATION METHOD BASED ON THE IMPROVED STACKED HOURGLASS NETWORK

机译:一种基于改进的堆积沙漏网络的单肢姿势估计方法

获取原文
获取原文并翻译 | 示例

摘要

At present, most high-accuracy single-person pose estimation methods have high computational complexity and insufficient real-time performance due to the complex structure of the network model. However, a single-person pose estimation method with high real-time performance also needs to improve its accuracy due to the simple structure of the network model. It is currently difficult to achieve both high accuracy and real-time performance in single-person pose estimation. For use in human-machine cooperative operations, this paper proposes a single-person upper limb pose estimation method based on an end-to-end approach for accurate and real-time limb pose estimation. Using the stacked hourglass network model, a single-person upper limb skeleton key point detection model is designed. A deconvolution layer is employed to replace the up-sampling operation of the hourglass module in the original model, solving the problem of rough feature maps. Integral regression is used to calculate the position coordinates of key points of the skeleton, reducing quantization errors and calculations. Experiments show that the developed single-person upper limb skeleton key point detection model achieves high accuracy and that the pose estimation method based on the end-to-end approach provides high accuracy and real-time performance.
机译:目前,由于网络模型的复杂结构,大多数高精度单人姿态估计方法具有高的计算复杂性和实时性能不足。然而,具有高实时性能的单人姿态估计方法也需要提高其准确性,由于网络模型的简单结构。目前难以在单人姿势估算中实现高精度和实时性能。为了用于人机协作操作,本文提出了一种基于准确和实时肢体姿态估计的端到端方法的单人上肢姿势估计方法。使用堆叠沙漏网络模型,设计了一个单人的上肢骨架键点检测模型。用于替换原始模型中沙漏模块的上采样操作,解决粗糙特征图的问题。积分回归用于计算骨骼关键点的位置坐标,减少量化误差和计算。实验表明,开发的单人上肢骨架关键点检测模型实现了高精度,并且基于端到端方法的姿势估计方法提供了高精度和实时性能。

著录项

  • 来源
  • 作者单位

    Minist Educ Key Lab Image Proc & Intelligent Control Wuhan 430074 Peoples R China|Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat 1037 Luoyu Rd Wuhan 430074 Peoples R China;

    Minist Educ Key Lab Image Proc & Intelligent Control Wuhan 430074 Peoples R China|Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat 1037 Luoyu Rd Wuhan 430074 Peoples R China;

    Minist Educ Key Lab Image Proc & Intelligent Control Wuhan 430074 Peoples R China|Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat 1037 Luoyu Rd Wuhan 430074 Peoples R China;

    Minist Educ Key Lab Image Proc & Intelligent Control Wuhan 430074 Peoples R China|Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat 1037 Luoyu Rd Wuhan 430074 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    convolutional neural network; stacked hourglass network; skeleton key point; single upper limb pose estimation; human-machine coordination;

    机译:卷积神经网络;堆积的沙漏网络;骨架关键点;单一上肢姿态估计;人机协调;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号