首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >COMPARISON OF SUPERVISED LEARNING METHODS FOR SPIKE TIME CODING IN SPIKING NEURAL NETWORKS
【24h】

COMPARISON OF SUPERVISED LEARNING METHODS FOR SPIKE TIME CODING IN SPIKING NEURAL NETWORKS

机译:脉冲神经网络中尖峰时间编码的监督学习方法的比较

获取原文
获取原文并翻译 | 示例

摘要

In this review we focus our attention on supervised learning methods for spike time coding in Spiking Neural Networks (SNNs). This study is motivated by recent experimental results regarding information coding in biological neural systems, which suggest that precise timing of individual spikes may be essential for efficient computation in the brain. We are concerned with the fundamental question: What paradigms of neural temporal coding can be implemented with the recent learning methods? In order to answer this question, we discuss various approaches to the learning task considered. We shortly describe the particular learning algorithms and report the results of experiments. Finally, we discuss the properties, assumptions and limitations of each method. We complete this review with a comprehensive list of pointers to the literature.
机译:在这篇综述中,我们将注意力集中在尖峰神经网络(SNN)中用于尖峰时间编码的监督学习方法上。这项研究的动机是有关生物神经系统中信息编码的最新实验结果,这表明单个峰值的精确定时对于大脑中的有效计算可能至关重要。我们关心一个基本问题:使用最新的学习方法可以实现神经时间编码的哪些范例?为了回答这个问题,我们讨论了考虑学习任务的各种方法。我们将简短描述特定的学习算法并报告实验结果。最后,我们讨论每种方法的性质,假设和局限性。我们通过全面的文献索引列表来完成本次审查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号