首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >EXTENDED LIE ALGEBRAIC STABILITY ANALYSIS FOR SWITCHED SYSTEMS WITH CONTINUOUS-TIME AND DISCRETE-TIME SUBSYSTEMS
【24h】

EXTENDED LIE ALGEBRAIC STABILITY ANALYSIS FOR SWITCHED SYSTEMS WITH CONTINUOUS-TIME AND DISCRETE-TIME SUBSYSTEMS

机译:具有连续时间和离散时间子系统的切换系统的扩展Lie代数稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

We analyze stability for switched systems which are composed of both continuous-time and discrete-time subsystems. By considering a Lie algebra generated by all subsystem matrices, we show that if all subsystems are Hurwitz/Schur stable and this Lie algebra is solvable, then there is a common quadratic Lyapunov function for all subsystems and thus the switched system is exponentially stable under arbitrary switching. When not all subsystems are stable and the same Lie algebra is solvable, we show that there is a common quadratic Lyapunov-like function for all subsystems and the switched system is exponentially stable under a dwell time scheme. Two numerical examples are provided to demonstrate the result.
机译:我们分析了由连续时间子系统和离散时间子系统组成的交换系统的稳定性。通过考虑所有子系统矩阵生成的李代数,我们表明,如果所有子系统都是Hurwitz / Schur稳定的并且该李代数是可解的,那么所有子系统都有一个通用的二次Lyapunov函数,因此交换系统在任意情况下都是指数稳定的交换。当并非所有子系统都是稳定的并且相同的李代数是可解的时,我们证明所有子系统都有一个通用的二次Lyapunov样函数,并且切换系统在驻留时间方案下是指数稳定的。提供了两个数值示例来说明结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号