首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >Lie Algebraic Stability Analysis for Switched Systems With Continuous-Time and Discrete-Time Subsystems
【24h】

Lie Algebraic Stability Analysis for Switched Systems With Continuous-Time and Discrete-Time Subsystems

机译:具有连续时间和离散时间子系统的交换系统的李代数稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

We analyze stability for switched systems which are composed of both continuous-time and discrete-time subsystems. By considering a Lie algebra generated by all subsystem matrices, we show that if all continuous-time subsystems are Hurwitz stable, all discrete-time subsystems are Schur stable, and furthermore the obtained Lie algebra is solvable, then there is a common quadratic Lyapunov function for all subsystems and thus the switched system is exponentially stable under arbitrary switching. A numerical example is provided to demonstrate the result.
机译:我们分析了由连续时间子系统和离散时间子系统组成的交换系统的稳定性。通过考虑所有子系统矩阵生成的李代数,我们表明,如果所有连续时间子系统都是Hurwitz稳定的,所有离散时间子系统都是Schur稳定的,而且所获得的李代数是可解的,则存在一个通用的二次Lyapunov函数对于所有子系统,因此在任意切换下,切换后的系统呈指数稳定。提供了一个数值示例来说明结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号