首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >CLASSIFICATION OF BREAST CANCER MALIGNANCY USING CYTOLOGICAL IMAGES OF FINE NEEDLE ASPIRATION BIOPSIES
【24h】

CLASSIFICATION OF BREAST CANCER MALIGNANCY USING CYTOLOGICAL IMAGES OF FINE NEEDLE ASPIRATION BIOPSIES

机译:使用细针吸出活检的细胞学图像对乳腺癌恶性肿瘤进行分类

获取原文
获取原文并翻译 | 示例

摘要

According to the World Health Organization (WHO), breast cancer (BC) is one of the most deadly cancers diagnosed among middle-aged women. Precise diagnosis and prognosis are crucial to reduce the high death rate. In this paper we present a framework for automatic malignancy grading of fine needle aspiration biopsy tissue. The malignancy grade is one of the most important factors taken into consideration during the prediction of cancer behavior after the treatment. Our framework is based on a classification using Support Vector Machines (SVM). The SVMs presented here are able to assign a malignancy grade based on preextracted features with the accuracy up to 94.24%. We also show that SVMs performed best out of four tested classifiers.
机译:根据世界卫生组织(WHO)的资料,乳腺癌(BC)是中年女性中诊断出的最致命的癌症之一。准确的诊断和预后对于降低高死亡率至关重要。在本文中,我们提出了细针穿刺活检组织自动恶性分级的框架。恶性程度是预测治疗后癌症行为时要考虑的最重要因素之一。我们的框架基于使用支持向量机(SVM)的分类。此处介绍的SVM能够基于预提取的功能分配恶性等级,准确性高达94.24%。我们还显示,SVM在四个经过测试的分类器中表现最佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号