首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >SIMULTANEOUS LOCALIZATION AND MAPPING: A FEATURE-BASED PROBABILISTIC APPROACH
【24h】

SIMULTANEOUS LOCALIZATION AND MAPPING: A FEATURE-BASED PROBABILISTIC APPROACH

机译:同时定位和制图:基于特征的概率方法

获取原文
获取原文并翻译 | 示例

摘要

This article provides an introduction to Simultaneous Localization And Mapping (SLAM), with the focus on probabilistic SLAM utilizing a feature-based description of the environment. A probabilistic formulation of the SLAM problem is introduced, and a solution based on the Extended Kalman Filter (EKF-SLAM) is shown. Important issues of convergence, consistency, observability, data association and scaling in EKF-SLAM are discussed from both theoretical and practical points of view. Major extensions to the basic EKF-SLAM method and some recent advances in SLAM are also presented.
机译:本文提供了同步本地化和映射(SLAM)的简介,重点介绍了利用基于特征的环境描述来实现概率SLAM。介绍了SLAM问题的概率公式,并给出了基于扩展卡尔曼滤波器(EKF-SLAM)的解决方案。从理论和实践的角度讨论了EKF-SLAM中的收敛性,一致性,可观察性,数据关联和缩放的重要问题。还介绍了基本EKF-SLAM方法的主要扩展以及SLAM的一些最新进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号