首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >A BIOLOGICALLY INSPIRED APPROACH TO FEASIBLE GAIT LEARNING FOR A HEXAPOD ROBOT
【24h】

A BIOLOGICALLY INSPIRED APPROACH TO FEASIBLE GAIT LEARNING FOR A HEXAPOD ROBOT

机译:六足机器人可行步态学习的生物启发方法

获取原文
获取原文并翻译 | 示例

摘要

The objective of this paper is to develop feasible gait patterns that could be used to control a real hexapod walking robot. These gaits should enable the fastest movement that is possible with the given robot's mechanics and drives on a flat terrain. Biological inspirations are commonly used in the design of walking robots and their control algorithms. However, legged robots differ significantly from their biological counterparts. Hence we believe that gait patterns should be learned using the robot or its simulation model rather than copied from insect behaviour. However, as we have found tahula rasa learning ineffective in this case due to the large and complicated search space, we adopt a different strategy: in a series of simulations we show how a progressive reduction of the permissible search space for the leg movements leads to the evolution of effective gait patterns. This strategy enables the evolutionary algorithm to discover proper leg co-ordination rules for a hexapod robot, using only simple dependencies between the states of the legs and a simple fitness function. The dependencies used are inspired by typical insect behaviour, although we show that all the introduced rules emerge also naturally in the evolved gait patterns. Finally, the gaits evolved in simulations are shown to be effective in experiments on a real walking robot.
机译:本文的目的是开发可行的步态模式,以用于控制真正的六足步行机器人。这些步态应使给定机器人的机械性能和驱动器在平坦的地形上可能实现最快的运动。生物学灵感通常用于步行机器人及其控制算法的设计中。但是,腿式机器人与生物学上的机器人有很大不同。因此,我们认为,应该使用机器人或其仿真模型来学习步态模式,而不是从昆虫行为中复制步态模式。但是,由于发现塔胡拉拉萨学习方法由于搜索空间庞大而复杂,在这种情况下是无效的,因此我们采用了不同的策略:在一系列模拟中,我们显示了逐步减小腿部运动的允许搜索空间会导致有效步态模式的演变。这种策略使进化算法能够仅使用腿部状态之间的简单依存关系和简单的适应度函数来发现六足机器人的正确的腿部协调规则。尽管我们证明了所有引入的规则在步态模式的演化中也自然地出现,但所使用的依赖关系却受到典型昆虫行为的启发。最后,在模拟中进化出的步态在真实的步行机器人上的实验中被证明是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号