首页> 外文期刊>International Journal of Adaptive Control and Signal Processing >Optimal control of uncertain quantized linear discrete-time systems
【24h】

Optimal control of uncertain quantized linear discrete-time systems

机译:不确定量化线性离散时间系统的最优控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the adaptive optimal regulator design for unknown quantized linear discrete-time control systems over fixed finite time is introduced. First, to mitigate the quantization error from input and state quantization, dynamic quantizer with time-varying step-size is utilized wherein it is shown that the quantization error will decrease overtime thus overcoming the drawback of the traditional uniform quantizer. Next, to relax the knowledge of system dynamics and achieve optimality, the adaptive dynamic programming methodology is adopted under Bellman's principle by using quantized state and input vector. Because of the time-dependency nature of finite horizon, an adaptive online estimator, which learns a newly defined time-varying action-dependent value function, is updated at each time step so that policy and/or value iterations are not needed. Further, an additional error term corresponding to the terminal constraint is defined and minimized along the system trajectory. The proposed design scheme yields a forward-in-time and online scheme, which enjoys great practical merits. Lyapunov analysis is used to show the boundedness of the closed-loop system; whereas when the time horizon is stretched to infinity as in the case of infinite horizon, asymptotic stability of the closed-loop system is demonstrated. Simulation results on a benchmarking batch reactor system are included to verify the theoretical claims. The net result is the design of the optimal adaptive controller for uncertain quantized linear discrete-time systems in a forward-in-time manner.
机译:本文介绍了固定有限时间内未知量化线性离散时间控制系统的自适应最优调节器设计。首先,为了减轻来自输入和状态量化的量化误差,利用了具有随时间变化的步长的动态量化器,其中示出了量化误差将随着时间的流逝而减小,从而克服了传统的统一量化器的缺点。接下来,为了放松系统动力学的知识并实现最优性,在Bellman原理下通过使用量化状态和输入矢量采用自适应动态规划方法。由于有限水平的时间相关性,在每个时间步都会更新一个自适应的在线估计器,该估计器学习新定义的随时间变化的行为相关的值函数,因此不需要进行策略和/或值迭代。此外,沿着系统轨迹定义并最小化与终端约束相对应的附加误差项。所提出的设计方案产生了一种实时的在线方案,具有很大的实用价值。用李雅普诺夫分析来表明闭环系统的有界性。反之,当时间范围像无穷远时一样被拉伸到无穷远时,则证明了闭环系统的渐近稳定性。包括在基准分批反应器系统上的仿真结果,以验证理论要求。最终结果是,以不确定的时间线性方式为不确定的量化线性离散时间系统设计了最佳自适应控制器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号