首页> 外文期刊>Interfaces and free boundaries >Minimal partitions for p -norms of eigenvalues
【24h】

Minimal partitions for p -norms of eigenvalues

机译:特征值的p-范数的最小划分

获取原文
获取原文并翻译 | 示例

摘要

In this article we are interested in studying partitions of the square, the disk and the equilateral triangle which minimize a p-norm of eigenvalues of the Dirichlet-Laplace operator. The extremal case of the infinity norm, where we minimize the largest fundamental eigenvalue of each cell, is one of our main interests. We propose three numerical algorithms which approximate the optimal configurations and we obtain tight upper bounds for the energy, which are better than the ones given by theoretical results. A thorough comparison of the results obtained by the three methods is given. We also investigate the behavior of the minimal partitions with respect to p. This allows us to see when partitions minimizing the 1-norm and the infinity-norm are different.
机译:在本文中,我们对研究正方形,圆盘和等边三角形的分区感兴趣,这些分区使Dirichlet-Laplace算子的特征值的p范数最小。无穷范数的极值情况(使每个单元格的最大基本特征值最小化)是我们的主要兴趣之一。我们提出了三种近似于最佳配置的数值算法,并获得了严格的能量上限,这优于理论结果所给出的上限。给出了通过三种方法获得的结果的全面比较。我们还研究了相对于p的最小分区的行为。这使我们可以看到最小化1-范数和无穷范数的分区何时不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号