首页> 外文期刊>Interfaces and free boundaries >Global weak solvability, continuous dependence on data, and large time growth of swelling moving interfaces
【24h】

Global weak solvability, continuous dependence on data, and large time growth of swelling moving interfaces

机译:全球弱的可加工性,持续依赖数据,以及膨胀移动界面的大时间生长

获取原文
获取原文并翻译 | 示例

摘要

We prove a global existence result for weak solutions to a free boundary problem with flux boundary conditions describing swelling along a halfline. Additionally, we show that solutions are not only unique but also depend continuously on data and parameters. The key observation is that the structure of our system of partial differential equations allows us to show that the moving a priori unknown interface never disappears. As main ingredients of the global existence proof, we rely on a local weak solvability result for our problem (as reported in [7]), uniform energy estimates of the solution, integral estimates on quantities defined at the free boundary, as well as a fine pointwise lower bound for the position of the moving boundary. Some of the estimates are time independent. They allow us to explore the large-time behavior of the position of the moving boundary. The approach is specific to one-dimensional settings.
机译:我们证明了一种全局存在的结果,对一个沿着半序肿胀肿胀的助焊剂边界条件的自由边界问题的弱解。此外,我们表明解决方案不仅是独特的,而且还依赖于数据和参数。关键观察是我们的部分微分方程系统的结构允许我们显示移动的先验未知界面从未消失。作为全球生存证明的主要成分,我们依靠本地弱的可加工性结果对我们的问题(如[7]所报告),解决方案的均匀能量估计,对自由边界定义的数量的整体估计,以及一个用于移动边界的位置的精细点底部。一些估计是时间独立。它们允许我们探索移动边界位置的大型行为。该方法特定于一维设置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号