首页> 外文期刊>Intelligent Transportation Systems, IEEE Transactions on >Bayesian Traffic Light Parameter Tracking Based on Semi-Hidden Markov Models
【24h】

Bayesian Traffic Light Parameter Tracking Based on Semi-Hidden Markov Models

机译:基于半隐式马尔可夫模型的贝叶斯交通灯参数跟踪

获取原文
获取原文并翻译 | 示例

摘要

The previous studies have shown that optimizing the driving velocity profiles and route selection based on the availability of the traffic lights' operation information in a traffic network can significantly reduce the individual and cumulative energy consumption of on-road vehicles for the urban driving. In this paper, we propose an accurate and precise stochastic online estimation method of the parameters of the traffic lights operating at a piecewise constant period. In this paper, we first model the traffic lights with a semi-hidden Markov model (SHMM) and then develop the period measurement model governed by a unique noise model specific to the indirect traffic light period measurements. The proposed method solves the estimation problem in two stages: in the first stage, we determine the sequence of the Markovian states maximizing the probability given the measurements and the SHMM parameters; then, in the second stage, we update the period and state duration estimates based on the Bayesian tracking given the corresponding latest measurements. The simulation and real vehicle data results prove that the proposed method can accurately estimate the switching times and the period of the piecewise fixed-period traffic lights.
机译:先前的研究表明,基于交通网络中交通信号灯操作信息的可用性来优化行驶速度曲线和路线选择可以显着减少城市驾驶的公路车辆的个体和累积能耗。在本文中,我们提出了一种以分段恒定周期运行的交通信号灯参数的精确,精确的随机在线估计方法。在本文中,我们首先使用半隐式马尔可夫模型(SHMM)对交通信号灯进行建模,然后开发由专用于间接交通信号灯周期测量的独特噪声模型控制的周期测量模型。所提出的方法分两个阶段解决了估计问题:在第一阶段,确定马尔可夫状态的序列,以给定测量值和SHMM参数最大化概率;然后,在第二阶段,我们根据给定的最新测量值,基于贝叶斯跟踪更新周期和状态持续时间估计。仿真和实际车辆数据结果证明,该方法能够准确估计分段固定周期交通信号灯的开关时间和周期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号