首页> 外文期刊>IEEE Transactions on Intelligent Transportation Systems >PCANet-Based Convolutional Neural Network Architecture for a Vehicle Model Recognition System
【24h】

PCANet-Based Convolutional Neural Network Architecture for a Vehicle Model Recognition System

机译:基于PCANet的卷积神经网络模型在车辆模型识别系统中的应用

获取原文
获取原文并翻译 | 示例

摘要

Vehicle model recognition plays a crucial role in intelligent transportation systems. Most of the existing vehicle model recognition methods focus on locating a large global feature or extracting more than one local subordinate-level feature from a vehicle image. In this paper, we propose the principal component analysis network-based convolutional neural network (PCNN) and pinpoint only one discriminative local feature of a vehicle, which is the vehicle headlamp, for vehicle model recognition. The proposed model eliminates the need for locating and segmenting the headlamp precisely. In particular, PCNN ascertains the effectiveness of both principal component analysis and CNN in extracting hierarchical features from a vehicle headlamp image and also reducing the computational complexity of the traditional CNN system. To further enhance the training procedure while still keeping the discriminative property of the network, the fully connected layer is updated by backpropagation optimized with stochastic gradient descent. The proposed method is validated using a data set that comprises 13 300 training images and 2660 testing images, respectively. The model is robust against various distortions. Experiments show that PCNN outperforms state-of-the-art techniques with an average accuracy of 99.51% over 38 vehicle makes and models using the PLUS data set. In addition, the effectiveness of the proposed method is also validated using the public CompCars data set, achieving 89.83% accuracy over 357 vehicle models.
机译:车辆模型识别在智能交通系统中起着至关重要的作用。现有的大多数车辆模型识别方法大多集中于定位较大的全局特征或从车辆图像中提取多个局部下级特征。在本文中,我们提出了基于主成分分析网络的卷积神经网络(PCNN),并且仅精确定位了车辆的一个可辨别局部特征,即车辆前照灯,用于车辆模型识别。提出的模型消除了精确定位和分段前灯的需要。尤其是,PCNN确定了主成分分析和CNN在从车辆前照灯图像中提取分层特征方面的有效性,并且还降低了传统CNN系统的计算复杂性。为了进一步增强训练过程,同时仍保持网络的判别属性,通过使用随机梯度下降优化的反向传播来更新完全连接的层。使用分别包含13300个训练图像和2660个测试图像的数据集验证了提出的方法。该模型对各种失真具有鲁棒性。实验表明,使用PLUS数据集,PCNN在38种车型和模型上的性能均优于最新技术,平均精度为99.51%。此外,使用公共CompCars数据集也验证了所提出方法的有效性,在357种车辆模型上实现了89.83%的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号