首页> 外文期刊>Intelligent Transportation Systems, IEEE Transactions on >Signal Multiobjective Optimization for Urban Traffic Network
【24h】

Signal Multiobjective Optimization for Urban Traffic Network

机译:城市交通网络信号多目标优化

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a multiobjective optimization method for signal control design at intersections in urban traffic network. The cell transmission model is employed for macroscopic simulation of the traffic. Additional rules are introduced to model different route choices from origins to destinations. Vehicle turning, merging, and diverging behaviors at intersections are considered. A multiobjective optimization problem (MOP) is formulated considering four measures in network traffic performance, i.e., maximizing system throughputs, minimizing traveling delays, enhancing traffic safety, and avoiding spillovers. The design parameters for an intersection include turning signal type, cycle time, signal offset, and green time in each phase. The resulting high-dimensional MOP is solved with the genetic algorithm (GA). An algorithm is proposed to assist the user to select and implement the optimal designs from the Pareto optimal solution set. A case study in a grid network of nine intersections is carried out to test the optimization algorithm. It is observed that the proposed method is able to achieve the optimal network performance with different traffic demands. The convergence and coefficient selection of GA are discussed. The guidelines for network signal design and operation from the current studies are presented.
机译:提出了一种城市交通网络交叉口信号控制设计的多目标优化方法。信元传输模型用于业务量的宏观仿真。引入了附加规则来模拟从起点到目的地的不同路线选择。考虑交叉路口的车辆转弯,合并和发散行为。制定多目标优化问题(MOP)时要考虑网络流量性能中的四种度量,即最大化系统吞吐量,最小化行进延迟,增强流量安全并避免溢出。交叉口的设计参数包括每个阶段的转向信号类型,循环时间,信号偏移和绿色时间。最终的高维MOP用遗传算法(GA)求解。提出了一种算法,可帮助用户从帕累托最优解决方案集中选择和实施最优设计。以九个交叉口的网格网络为例,对优化算法进行了测试。可以看出,所提出的方法能够在不同的流量需求下实现最佳的网络性能。讨论了遗传算法的收敛性和系数选择。介绍了当前研究中的网络信号设计和操作指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号