首页> 外文期刊>IEEE Transactions on Intelligent Transportation Systems >Interactive Road Situation Analysis for Driver Assistance and Safety Warning Systems: Framework and Algorithms
【24h】

Interactive Road Situation Analysis for Driver Assistance and Safety Warning Systems: Framework and Algorithms

机译:驾驶员辅助和安全预警系统的交互式路况分析:框架和算法

获取原文
获取原文并翻译 | 示例

摘要

Road situation analysis in Interactive Intelligent Driver-Assistance and Safety Warning (I2DASW) systems involves estimation and prediction of the position and size of various on-road obstacles. Real-time processing, given incomplete and uncertain information, is a challenge for current object detection and tracking technologies. This paper proposed a development framework and novel algorithms for road situation analysis based on driving action behavior, where the safety situation is analyzed by simulating real driving action behaviors. First, we review recent development and trends in road situation analysis to provide perspective for the related research. Second, we introduce a road situation analysis framework, where onboard sensors provide information about drivers, traffic environment, and vehicles. Finally, on the basis of the previous frameworks, we proposed multiple-obstacle detection and tracking algorithms using multiple sensors including radar, lidar, and a camera, where a decentralized track-to-track fusion approach is introduced to fuse these sensors. In order to reduce the effect of obstacle shape and appearance, we cluster lidar data and then classify obstacles into two categories: static and moving objects. Future collisions are assessed by computation of local tracks of moving obstacles using extended Kalman filter, maximum likelihood estimation to fuse distributed local tracks into global tracks, and finally, computation of future collision distribution from the global tracks. Our experimental results show that our approach is efficient for road situation evaluation and prediction
机译:交互式智能驾驶辅助和安全警告(I2DASW)系统中的路况分析涉及各种道路障碍物的位置和大小的估计和预测。给定不完整和不确定的信息,实时处理是当前对象检测和跟踪技术的挑战。本文提出了一种基于驾驶行为的路况分析开发框架和新算法,通过模拟实际驾驶行为来分析安全状况。首先,我们回顾道路状况分析的最新发展和趋势,以提供相关研究的视角。其次,我们介绍一种道路状况分析框架,其中的车载传感器提供有关驾驶员,交通环境和车辆的信息。最后,在以前的框架的基础上,我们提出了使用包括雷达,激光雷达和摄像头在内的多个传感器的多障碍物检测和跟踪算法,其中引入了分散的轨间融合方法来融合这些传感器。为了减少障碍物形状和外观的影响,我们对激光雷达数据进行聚类,然后将障碍物分为两类:静态对象和运动对象。通过使用扩展的卡尔曼滤波器计算移动障碍物的局部轨迹,评估将合并的局部轨迹融合为全局轨迹的最大似然估计以及最终从全局轨迹计算未来的碰撞分布,来评估未来的碰撞。我们的实验结果表明,我们的方法对于道路状况的评估和预测是有效的

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号