首页> 外文期刊>Intelligent Transportation Systems, IEEE Transactions on >Learning Roadway Surface Disruption Patterns Using the Bag of Words Representation
【24h】

Learning Roadway Surface Disruption Patterns Using the Bag of Words Representation

机译:使用单词表示法学习巷道表面扰动模式

获取原文
获取原文并翻译 | 示例

摘要

Accurately classifying roadway surface disruptions (RSDs) plays a crucial role to enhance quality transportation and road safety. To this end, smartphones are becoming an ad hoc tool to collect road data, while the user is at the steering wheel. In this paper, for the first time, sensed data are represented with a novel technique inspired in the bag of words representation. New results suggest that segments of accelerometer readings play a key role to characterize different classes of events, boosting classification performance. A novel data collection process was conducted in real-life environments, where the smartphones were freely placed at five user-surveyed locations, within a fleet of cars and trucks. To the best of our knowledge, this is the largest and most heterogenous data set for RSDs, and we make it publicly available. We approach the problem of identifying RSDs as one of supervised learning, where we contrast representative classifiers, most of them not previously reported. We exhaustively evaluated the performance of all classifiers in six data sets, most of them resembling actual data sets used in similar projects. We found that in all cases, the best classifier outperforms the best results reported so far. The proposed methodology was extensively evaluated through a sensitivity analysis to determine the relevance of the parameters. Experimental results reveal that the representation technique boosts considerably the classification performance when compared with the state of the art solutions, reducing in one order of magnitude the false-positivesegatives rate and surpassing the classification accuracy for about 10% in a multiclass data set.
机译:准确分类道路表面破坏(RSD)在提高质量运输和道路安全方面起着至关重要的作用。为此,当用户在方向盘上时,智能手机已成为收集道路数据的临时工具。在本文中,首次以一种新颖的技术从字词表示法中启发了感测到的数据。新结果表明,加速度计读数的各个部分在表征不同事件类别方面起着关键作用,从而提高了分类性能。在现实环境中进行了新颖的数据收集过程,在这些环境中,将智能手机自由放置在一组由用户提供的小汽车和卡车中。据我们所知,这是RSD的最大和最异构的数据集,我们将其公开提供。我们处理将RSD识别为监督学习的问题,在此我们对比了代表性分类器,其中大多数以前未曾报道过。我们详尽评估了六个数据集中所有分类器的性能,其中大多数类似于相似项目中使用的实际数据集。我们发现,在所有情况下,最佳分类器均优于迄今为止报告的最佳结果。通过敏感性分析对所提出的方法进行了广泛的评估,以确定参数的相关性。实验结果表明,与现有技术的解决方案相比,表示技术显着提高了分类性能,在一个多类数据集中将假阳性/阴性率降低了一个数量级,并超过了约1​​0%的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号