首页> 外文期刊>Intelligent data analysis >An advanced profile hidden Markov model for malware detection
【24h】

An advanced profile hidden Markov model for malware detection

机译:用于恶意软件检测的高级配置文件隐马尔可夫模型

获取原文
获取原文并翻译 | 示例

摘要

The rapid growth of malicious software (malware) production in recent decades and the increasing number of threats posed by malware to network environments, such as the Internet and intelligent environments, emphasize the need for more research on the security of computer networks in information security and digital forensics. The method presented in this study identifies “species” of malware families, which are more sophisticated, obfuscated, and structurally diverse. We propose a hybrid technique combining aspects of signature detection with machine learning based methods to classify malware families. The method is carried out by utilizing Profile Hidden Markov Models (PHMMs) on the behavioral characteristics of malware species. This paper explains the process of modeling and training an advanced PHMM using sequences obtained from the extraction of each malware family’s paramount features, and the canonical sequences created in the process of Multiple Sequence Alignment (MSA) production. Due to the fact that not all parts of a file are malicious, the goal is to distinguish the malicious portions from the benign ones and place more emphasis on them in order to increase the likelihood of malware detection by having the least impact from the benign portions. Based on “consensus sequences”, the experimental results show that our proposed approach outperforms other HMM-based techniques even when limited training data is available. All supplementary materials including the code, datasets, and a complete list of results are available for public access on the Web.
机译:近几十年来的恶意软件(恶意软件)生产的快速增长和恶意软件对网络环境构成的威胁越来越多的威胁,例如互联网和智能环境,强调了对信息安全性的计算机网络安全性的需要数字取证。本研究中提出的方法标识恶意软件系列的“物种”,这些恶意软件系列是更复杂,混淆和结构性多样化的。我们提出了一种混合技术,将签名检测的方面与基于机器学习的方法相结合,以对恶意软件系列进行分类。该方法是通过利用概要隐藏的马尔可夫模型(PHMMS)来执行恶意软件的行为特征。本文介绍了使用从每个恶意家族的最重要特征的提取中获得的序列建模和训练高级PHMM的过程,以及在多个序列对准(MSA)生产过程中创建的规范序列。由于不是文件的所有部分都是恶意的,目标是将恶意部分与良性的部分区分开来,并更加强调它们,以便通过对良性部分的影响最小的影响来增加恶意软件检测的可能性。基于“共识序列”,实验结果表明,即使在有限的训练数据可用时,我们所提出的方法也优于其他基于HMM的技术。所有补充材料包括代码,数据集和完整的结果列表可用于网络上的公共访问。

著录项

  • 来源
    《Intelligent data analysis》 |2020年第4期|759-778|共20页
  • 作者单位

    Department of Computer Science and Information Technology Institute for Advanced Studies in Basic Sciences;

    Department of Computer Science and Information Technology Institute for Advanced Studies in Basic Sciences|b Institute of Formal and Applied Linguistics Faculty of Mathematics and Physics Charles University;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Malware detection; metamorphic; static analysis; profile hidden Markov models;

    机译:恶意软件检测;变质;静态分析;配置文件隐藏马尔可夫模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号