首页> 外文期刊>Intelligent data analysis >TPPG: Privacy-preserving trajectory data publication based on 3D-Grid partition
【24h】

TPPG: Privacy-preserving trajectory data publication based on 3D-Grid partition

机译:TPPG:基于3D网格分区的隐私保留轨迹数据发布

获取原文
获取原文并翻译 | 示例

摘要

The issue of privacy preservation is receiving more and more attention when publishing trajectory data. In this paper, we study the challenges of published trajectory data anonymization. Most existing anonymization methods directly delete the trajectories or locations violating specific constraints, it is likely to cause a large loss of information. To address the problem, this paper proposes a trajectory privacy preservation method based on 3D-Grid partition in order to reduce information loss in the process of trajectory anonymization. This method first divides the trajectory region into several spatio-temporal units (denoted as 3D-cells), and then conducts location exchange or suppression in each spatio-temporal unit. Based on the trajectory data partition, within each 3D-cell, the proposed method exchanges locations among trajectories or removes very few locations of some sub-trajectories which do not meet the conditions rather than the whole trajectory. Our method considers three scenarios of trajectory distribution and measures trajectory similarity based on time, orientation, spatial locations and other features of trajectory. After the reconstruction of the related anonymous sub-trajectories, an anonymized trajectory dataset is obtained. Theoretical analysis and experimental results show that, compared to other methods, the proposed algorithm effectively preserves trajectory data privacy and improves the anonymous results of trajectory data in terms of accuracy and availability.
机译:隐私保存问题在发布轨迹数据时受到越来越多的关注。在本文中,我们研究了已发布的轨迹数据匿名化的挑战。大多数现有的匿名化方法直接删除违规的轨迹或位置,违反特定约束,它可能导致大量信息损失。为了解决这个问题,本文提出了一种基于3D网格分区的轨迹隐私保存方法,以减少轨迹匿名过程中的信息丢失。该方法首先将轨迹区域分成几个时空单元(表示为3D细胞),然后在每个时空单元中进行位置交换或抑制。基于轨迹数据分区,在每个3D单元内,所提出的方法在轨迹之间交换位置,或者除去一些不符合条件而不是整个轨迹的子轨迹的几个位置。我们的方法考虑了轨迹分布的三种场景,并根据时间,方向,空间位置和轨迹的其他特征来测量轨迹相似度。在重建相关匿名子轨迹之后,获得了匿名的轨迹数据集。理论分析和实验结果表明,与其他方法相比,所提出的算法有效地保留了轨迹数据隐私,并在准确性和可用性方面提高了轨迹数据的匿名结果。

著录项

  • 来源
    《Intelligent data analysis》 |2019年第3期|503-533|共31页
  • 作者单位

    Anhui Normal Univ Sch Comp & Informat 189 Jiuhua South Rd Wuhu 241003 Anhui Peoples R China|Anhui Prov Key Lab Network & Informat Secur Wuhu Anhui Peoples R China;

    Anhui Normal Univ Sch Comp & Informat 189 Jiuhua South Rd Wuhu 241003 Anhui Peoples R China|Anhui Prov Key Lab Network & Informat Secur Wuhu Anhui Peoples R China;

    Anhui Normal Univ Sch Comp & Informat 189 Jiuhua South Rd Wuhu 241003 Anhui Peoples R China|Anhui Prov Key Lab Network & Informat Secur Wuhu Anhui Peoples R China;

    Anhui Normal Univ Sch Comp & Informat 189 Jiuhua South Rd Wuhu 241003 Anhui Peoples R China|Anhui Prov Key Lab Network & Informat Secur Wuhu Anhui Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Privacy preservation; trajectory data partition; 3D-cell; trajectory similarity measurement; trajectory anonymization; trajectory reconstruction;

    机译:隐私保存;轨迹数据分区;3D细胞;轨迹相似度测量;轨迹匿名化;轨迹重建;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号