首页> 外文期刊>Journal of supercomputing >An efficient method for privacy-preserving trajectory data publishing based on data partitioning
【24h】

An efficient method for privacy-preserving trajectory data publishing based on data partitioning

机译:基于数据分区的保护轨迹数据发布的一种有效方法

获取原文
获取原文并翻译 | 示例

摘要

Since Osman Abul et al. first proposed the k-anonymity-based privacy protection for trajectory data, researchers have proposed a variety of trajectory privacy-preserving methods. These methods mainly adopt a static anonymity algorithm, which only focusing on the trajectories in a specific time span, directly anonymizes data and publishes them without considering dynamic nature of trajectory data as the new time slice arriving. Furthermore, due to its correlation with time and position, the trajectory data is produced in large scale and many sensitive attributes; the traditional k-anonymity-based privacy-preserving models need to recalculate the last released trajectory data, which will increase the computing cost and reduce the availability of the released trajectories, are not fit for privacy protection in large-scale trajectory data. Therefore, this paper presents a method to dynamically publish the large-scale vehicle trajectory data with privacy protection under (k,delta)security constraints. According to the spatial and temporal characteristics of vehicle trajectory data, this paper first proposes a method to partition the trajectory data for storage and computation. We choose the sample point (xi,yi)at time ti as partition points and store the partitions of the trajectory data according to the time sequence and location of the running vehicle. This results in the efficient trajectory scanning, clustering and privacy protection. We use (xi,yi,tm-tn) to represent the identifier of trajectory data to publish, use the generalize function to cluster trajectory data under the (k,delta) security constraints. Through this way, we can effectively process the trajectory in every data partition as time goes on and need not to recalculate the released trajectories, effectively reduce the computing cost.Through experiments on real trajectory data and Oldenburg trajectory data, confirming the data partitioning method in privacy-preserving large-scale trajectory data publishing under the security constraint of (k,delta)and the l-diversity. By the experimental comparison, our method maintains a least level of computing cost and higher data availability.
机译:自从Osman Abul等人以来。首先提出了基于K-匿名的隐私保护,用于轨迹数据,研究人员提出了各种轨迹隐私保留方法。这些方法主要采用静态匿名算法,该算法仅关注特定时间跨度的轨迹,直接匿名数据并在不考虑轨迹数据的动态性质作为新的时曲面到达的情况下发布它们。此外,由于其与时间和位置的相关性,轨迹数据是大规模和许多敏感属性的;传统的基于K-匿名的隐私保留模型需要重新计算上次发布的轨迹数据,这将增加计算成本并降低释放轨迹的可用性,不适合在大规模轨迹数据中的隐私保护。因此,本文介绍了一种动态发布大型车辆轨迹数据,在(k,delta)安全约束下具有隐私保护的大规模车辆轨迹数据。根据车辆轨迹数据的空间和时间特征,本文首先提出了一种分区轨迹数据以进行存储和计算的方法。我们在时间ti 作为分区点选择样本点(xi,yi),并根据运行车辆的时间序列和位置存储轨迹数据的分区。这导致有效的轨迹扫描,聚类和隐私保护。我们使用(xi,yi,tm-tn)表示要发布的轨迹数据的标识符,请使用概括函数在(k,delta)安全约束下群集轨迹数据。通过这种方式,随着时间的推移,我们可以有效地处理每个数据分区中的轨迹,并且不需要重新计算释放的轨迹,有效地降低了实际轨迹数据和奥尔登堡轨迹数据的计算成本,确认数据分区数据在(k,delta)和l-多样性的安全约束下保留了私人轨迹数据发布。通过实验比较,我们的方法维持最小的计算成本和更高的数据可用性。

著录项

  • 来源
    《Journal of supercomputing》 |2020年第7期|5276-5300|共25页
  • 作者单位

    Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China;

    Griffith Univ Sch Informat & Commun Technol Brisbane Qld Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号