首页> 外文期刊>Intelligent data analysis >Boosting classifiers for drifting concepts
【24h】

Boosting classifiers for drifting concepts

机译:提升分类器的概念

获取原文
获取原文并翻译 | 示例

摘要

In many real-world classification tasks, data arrives over time and the target concept to be learned from the data stream may change over time. Boosting methods are well-suited for learning from data streams, but do not address this concept drift problem. This paper proposes a boosting-like method to train a classifier ensemble from data streams that naturally adapts to concept drift. Moreover, it allows to quantify the drift in terms of its base learners. Similar as in regular boosting, examples are re-weighted to induce a diverse ensemble of base models. In order to handle drift, the proposed method continuously re-weights the ensemble members based on their performance on the most recent examples only. The proposed strategy adapts quickly to different kinds of concept drift. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the data and are thus not suited for mining massive streams. The proposed algorithm has low computational costs.
机译:在许多现实世界的分类任务中,数据会随着时间的推移而到达,并且要从数据流中学习的目标概念可能会随着时间而改变。增强方法非常适合从数据流中学习,但不能解决此概念漂移问题。本文提出了一种类似升压的方法来从自然适应于概念漂移的数据流中训练分类器集合。此外,它允许根据基础学习者来量化漂移。与常规增强类似,对示例进行重新加权以引发基础模型的各种集成。为了处理漂移,仅在最近的示例上,所提出的方法基于其性能连续对加权集合成员进行重新加权。提出的策略可以快速适应各种概念漂移。实验证明该算法优于忽略概念漂移的学习算法。它的性能不比高级自适应时间窗口和存储所有数据的示例选择策略差,因此不适合挖掘大量流。所提出的算法具有较低的计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号