首页> 外文期刊>Intelligent data analysis >EuDiC SVM: A novel support vector machine classification algorithm
【24h】

EuDiC SVM: A novel support vector machine classification algorithm

机译:EuDiC SVM:一种新颖的支持向量机分类算法

获取原文
获取原文并翻译 | 示例

摘要

The Support Vector Machine (SVM) is a powerful technique for data classification. For linearly separable data points, the SVM constructs an optimal separating hyper-plane as a decision surface, to divide the data points of different categories in the vector space. For the non-linearly separable data points, the Kernel functions are used to extend the concept of the optimal separating hyper-plane so that the data can be linearly separable. The different kernel functions have different characteristics and hence the performance of the SVM is highly influenced by the selection of kernel functions. This paper presents the classification algorithm that uses the SVM in the training phase and the Mahalanobis distance in the testing phase, in order to design a classifier which has low impact of kernel function on the classification accuracy, positively. The Mahalanobis distance is used to replace the optimal separating hyper-plane as the classification decision making function in the SVM. The proposed approach is compared with Euclidean-SVM, which uses Euclidean distance function to replace the optimal separating hyper-plane as the classification boundary. It has also been evaluated against conventional SVM too. The experimental results show that the accuracy of the EuDiC (Euclidean Distance towards the Center of data) SVM classifier has a low impact on the implementation of kernel functions. The EuDiC SVM also achieves the drastic reduction in the classification time since it only depends on the mean of Support Vectors (SVs) of each category for classification. To prove its effectiveness on other types of data, the time series data have also been used. Due to robust design of the EuDiC, it also performs well for time series data too.
机译:支持向量机(SVM)是用于数据分类的强大技术。对于线性可分离的数据点,SVM构造一个最佳的分离超平面作为决策面,以在向量空间中划分不同类别的数据点。对于非线性可分离的数据点,使用内核函数扩展了最佳分离超平面的概念,以便数据可以线性可分离。不同的内核功能具有不同的特性,因此SVM的性能受内核功能选择的影响很大。本文提出了一种分类算法,该算法在训练阶段使用支持向量机,在测试阶段使用马氏距离,从而积极设计一种核函数对分类精度影响较小的分类器。马氏距离用于代替最优分离超平面作为SVM中的分类决策功能。将该方法与欧几里得支持向量机进行了比较,后者使用欧几里得距离函数代替最优分离超平面作为分类边界。它也已针对常规SVM进行了评估。实验结果表明,EuDiC(到数据中心的欧几里德距离)SVM分类器的准确性对内核函数的实现影响很小。 EuDiC SVM还大大减少了分类时间,因为它仅取决于分类的每个类别的支持向量(SV)的平均值。为了证明其对其他类型数据的有效性,还使用了时间序列数据。由于EuDiC的坚固设计,它对于时间序列数据也表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号