首页> 外文学位 >CARSVM: Classification by integrating class association rules and support vector machine.
【24h】

CARSVM: Classification by integrating class association rules and support vector machine.

机译:CARSVM:通过集成类关联规则和支持向量机进行分类。

获取原文
获取原文并翻译 | 示例

摘要

Classification is an important data mining task, widely used in numerous real world applications. It aims at exploring through data objects (training set) to find a set of rules which determine the class of each object according to its attributes. These rules are later used to build a classifier to predict the class or missing attribute value of unseen objects whose class might not be known. Classification approaches are mainly based on either machine learning techniques or association rule-based algorithms, known as associative classification. Despite their good performance in real-world applications, both approaches have some shortcomings. Machine learning algorithms based classification suffers from understandability and interpretability problems, while associative classifiers have efficiency issues.; In this study, we propose a novel classification framework, namely the CARSVM model, which integrates association rule mining and support vector machine (SVM). The goal is to benefit from advantages of both, the knowledge represented by class association rules and the power of the SVM algorithm, to construct an efficient and accurate classifier model that overcomes the drawbacks of machine learning and associative classification algorithms. Instead of using the original training set, a set of rule-based feature vectors, which are generated based on the discriminative ability of class association rules over the training samples, are presented to the learning module of the SVM algorithm. Because of the importance and popularity of gene expression analysis as real world application of the classification model, we present an extension of CARSVM combined with feature selection to be applied to microarray gene expression datasets. Then, we describe how this combination will provide biologists with an efficient and understandable classifier model. The reported test results demonstrate the applicability, efficiency and effectiveness of the proposed model.
机译:分类是一项重要的数据挖掘任务,已广泛用于许多实际应用中。它旨在探索数据对象(训练集)以找到一组规则,这些规则根据其属性确定每个对象的类别。这些规则随后用于构建分类器,以预测其类别可能未知的未见对象的类别或缺少的属性值。分类方法主要基于机器学习技术或基于关联规则的算法,称为关联分类。尽管它们在实际应用中具有良好的性能,但是这两种方法都有一些缺点。基于机器学习算法的分类存在可理解性和可解释性的问题,而关联分类器则存在效率问题。在这项研究中,我们提出了一种新颖的分类框架,即CARSVM模型,该模型集成了关联规则挖掘和支持向量机(SVM)。目标是从类关联规则表示的知识和SVM算法的功能两者的优点中受益,以构建有效且准确的分类器模型,从而克服机器学习和关联分类算法的缺点。代替使用原始训练集,将基于类关联规则对训练样本的判别能力生成的基于规则的特征向量集呈现给SVM算法的学习模块。由于基因表达分析作为分类模型在现实世界中的应用的重要性和普遍性,我们提出了CARSVM的扩展与特征选择相结合,以应用于微阵列基因表达数据集。然后,我们描述这种组合如何为生物学家提供有效且易于理解的分类器模型。报告的测试结果证明了该模型的适用性,效率和有效性。

著录项

  • 作者

    Kianmehr, Keivan.;

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Computer Science.
  • 学位 M.Sc.
  • 年度 2006
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号