首页> 外文期刊>Intelligent data analysis >Binary partition for itemsets expansion in mining high utility itemsets
【24h】

Binary partition for itemsets expansion in mining high utility itemsets

机译:用于挖掘高功能项目集的项目集扩展的二进制分区

获取原文
获取原文并翻译 | 示例

摘要

High utility itemset mining has recently emerged to address the limitations of frequent itemset mining. It entails relevance measures to reflect both statistical significance and user expectations. Whether breadth-first or depth-first search algorithms are employed, most methods generate new candidates by 1-extension of existing itemsets (i.e., by adding only one item to verified itemsets to generate new potential candidates). As an alternative to 1-extension, we introduce an expansion method based on binary partition. We then define the transaction utility list and key support count and discuss a new pruning strategy. Based on the new itemset expansion method and pruning strategy, we propose an efficient high utility itemset mining algorithm called BPHUI-Mine (Binary Partition-based High Utility Itemsets Mine). Tests on publicly available datasets show that the proposed algorithm outperforms other state-of-the-art algorithms.
机译:最近出现了高实用项集挖掘,以解决频繁项集挖掘的局限性。它需要采取相关措施来反映统计意义和用户期望。无论采用广度优先搜索算法还是深度优先搜索算法,大多数方法都是通过对现有项目集进行1扩展来生成新的候选对象(即仅将一个项目添加到已验证的项目集以生成新的潜在候选对象)。作为1-扩展的替代方法,我们介绍了一种基于二进制分区的扩展方法。然后,我们定义事务实用程序列表和关键支持计数,并讨论新的修剪策略。基于新的项集扩展方法和修剪策略,我们提出了一种高效的高实用性项集挖掘算法,称为BPHUI-Mine(基于二进制分区的高实用性项集矿)。对公开可用数据集的测试表明,该算法优于其他最新算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号