首页> 外文期刊>Expert systems with applications >High utility itemset mining using binary differential evolution: An application to customer segmentation
【24h】

High utility itemset mining using binary differential evolution: An application to customer segmentation

机译:使用二进制差分演进的高实用程序项集挖掘:客户分割的应用程序

获取原文
获取原文并翻译 | 示例

摘要

In this paper, high utility itemset mining (HUIM) algorithms driven by Binary Differential Evolution (BDE) and an Adaptive Binary Differential Evolution (ABDE) are proposed separately. These are compared with the HUIM algorithms of (i) Binary Particle Swarm Optimization, (ii) Genetic Algorithm and (iii) a two-phase HUIM found in the literature. The proposed HUIM algorithms are applied on seven datasets, where OnlineRetail dataset is a reallife dataset and the objective there is to segment high value customers based on monetary value. From the results, it is clear that BDE based HUIM outperformed the extant algorithms in literature and also the ABDE HUIM algorithm on all datasets with respect to the maximum number of itemsets mined.
机译:本文提出了由二进制差分演进(BDE)驱动的高实用程序项目集挖掘(HUIM)算法和自适应二进制差分演进(ABDE)。 将这些与(i)二元粒子群优化的Huim算法进行比较,(ii)遗传算法和(iii)在文献中发现的两阶段Huim。 所提出的Huim算法应用于七个数据集,其中Onlineretail DataSet是Reallife数据集,目标基于货币价值分段为高价值客户。 从结果中,很清楚,基于BDE的Huim从事文献中的远端算法,以及所有数据集的ABDE Huim算法相对于所开采的最大项目。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号