首页> 外文期刊>Intelligent automation and soft computing >Job Allocation And Scheduling In Multi Robotic Tasks Considering Collision Free Operation
【24h】

Job Allocation And Scheduling In Multi Robotic Tasks Considering Collision Free Operation

机译:考虑无碰撞操作的多机器人任务的作业分配和调度

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a method of job allocation and scheduling that determines optimal job allocation and the shortest paths for robots having collision regions. The problem described in this paper is an application of a classical flexible job-shop scheduling problem with shared resources. A genetic algorithm and a TABU search are used for the job allocation and scheduling procedures. Overlapping activities in a collision region can result in robot collisions. This should be a hard constraint in which a non-overlapping condition is guaranteed. To achieve this, the sequencing in a collision region should be determined. Job assignments, ordering in non-collision regions of each robot, and priorities in regions shared between various robots are encoded using a genetic representation in which the objective is to minimize the job completion time. As the search space is extremely large, a genetic algorithm is used for global searches and TABU is used for local searches. The most viable solution is obtained using the genetic algorithm. The TABU search enhances the solution by changing the path order of each robot in non-collision regions as well as the priorities in regions shared by various robots. A genetic encoding method and a procedure to calculate the makespan value under non-collision constraints was developed. To use the TABU search, neighborhoods were developed to boost the local search capability. As a verification test, the proposed method was applied to real problems in the automobile industry.
机译:本文提出了一种作业分配和调度方法,该方法可以确定具有冲突区域的机器人的最佳作业分配和最短路径。本文描述的问题是具有共享资源的经典灵活作业车间调度问题的应用。遗传算法和TABU搜索用于工作分配和计划程序。碰撞区域中的重叠活动可能导致机器人碰撞。这应该是硬约束,其中要保证不重叠的条件。为此,应确定碰撞区域中的测序。使用遗传表示对作业分配,每个机器人的非冲突区域中的排序以及各个机器人之间共享的区域中的优先级进行编码,其目的是最大程度地减少作业完成时间。由于搜索空间非常大,因此将遗传算法用于全局搜索,将TABU用于局部搜索。使用遗传算法可获得最可行的解决方案。 TABU搜索通过更改非冲突区域中每个机器人的路径顺序以及各种机器人共享的区域中的优先级来增强解决方案。开发了一种遗传编码方法和一种在非碰撞约束下计算制造值的程序。为了使用TABU搜索,开发了邻域以增强本地搜索功能。作为验证测试​​,该方法适用于汽车工业中的实际问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号