首页> 外文期刊>Intelligent automation and soft computing >OPTIMIZATION OF ENSEMBLE NEURAL NETWORKS WITH TYPE-2 FUZZY INTEGRATION OF RESPONSES FOR THE DOW JONES TIME SERIES PREDICTION
【24h】

OPTIMIZATION OF ENSEMBLE NEURAL NETWORKS WITH TYPE-2 FUZZY INTEGRATION OF RESPONSES FOR THE DOW JONES TIME SERIES PREDICTION

机译:陶氏琼斯时间序列预测的带2型模糊积分的可集成神经网络优化

获取原文
获取原文并翻译 | 示例

摘要

This paper describes an optimization method based on genetic algorithms for designing ensemble neural networks with fuzzy response aggregation to forecast complex time series. The time series that was considered in this paper, to compare the hybrid approach with traditional methods, is the Dow Jones data, and the results are presented for the optimization of the structure of the ensemble neural network with type-1 and type-2 fuzzy response integration. Simulation results show that the ensemble approach produces 99% prediction accuracy for the Dow Jones time series and that using type-2 fuzzy logic improves the performance of the predictor.
机译:本文描述了一种基于遗传算法的优化方法,用于设计具有模糊响应聚合的集合神经网络来预测复杂的时间序列。本文考虑的用于将混合方法与传统方法进行比较的时间序列是道琼斯数据,并给出了用于优化具有类型1和类型2模糊的集成神经网络结构的结果。响应整合。仿真结果表明,集成方法对道琼斯时间序列的预测准确率达到99%,并且使用2型模糊逻辑可以提高预测器的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号