首页> 外文期刊>Intelligent automation and soft computing >RH: An improved AMH aggregate query method
【24h】

RH: An improved AMH aggregate query method

机译:RH:一种改进的AMH聚合查询方法

获取原文
获取原文并翻译 | 示例

摘要

As data stream grows exponentially, the aggregate query technique is widely used since it can rapidly obtain the summary information. Typical approximate aggregate query methods, like sliding-window, random sampling, wavelet, sketch index structure, histogram, etc., all evaluate the quality of the algorithms by the average size of query errors and ignore the maximum relative error, which determines the availability of the methods. Regarding this issue, this paper proposes the Reasonable Histogram (RH) method to improve the classic aggregate query method AMH. Based on the analysis of AMH errors' mathematical characteristics, we build an aggregate query mathematical model based on the Kalman filter, using the optimal estimate of the buckets' average frequency to calculate the aggregate values of the anomalous points, so as to restrain the maximum relative error.
机译:随着数据流呈指数增长,聚集查询技术可以快速获取摘要信息,因此被广泛使用。典型的近似集合查询方法(如滑动窗口,随机抽样,小波,草图索引结构,直方图等)均通过查询错误的平均大小来评估算法的质量,而忽略最大相对误差,从而确定可用性的方法。针对这一问题,本文提出了一种合理的直方图(RH)方法来改进经典的聚合查询方法AMH。在分析AMH误差的数学特征的基础上,建立基于卡尔曼滤波的集合查询数学模型,利用对铲斗平均频率的最优估计来计算异常点的集合值,以限制最大相对误差。

著录项

  • 来源
    《Intelligent automation and soft computing》 |2016年第4期|667-673|共7页
  • 作者单位

    Hohai Univ, Coll Comp & Informat, Nanjing, Jiangsu, Peoples R China;

    Hohai Univ, Coll Comp & Informat, Nanjing, Jiangsu, Peoples R China;

    Hohai Univ, Coll Comp & Informat, Nanjing, Jiangsu, Peoples R China;

    Hohai Univ, Coll Comp & Informat, Nanjing, Jiangsu, Peoples R China|PLA Univ Sci & Technol, Inst Command Informat Syst, Nanjing, Jiangsu, Peoples R China;

    Hohai Univ, Coll Comp & Informat, Nanjing, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    RH; Kalman filter; aggregate query; data stream;

    机译:相对湿度;卡尔曼滤波;聚合查询;数据流;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号