首页> 外文期刊>Intelligent automation and soft computing >Enhanced Particle Swarm Optimization With Self-Adaptation Based On Fitness-Weighted Acceleration Coefficients
【24h】

Enhanced Particle Swarm Optimization With Self-Adaptation Based On Fitness-Weighted Acceleration Coefficients

机译:基于适应度加权加速度系数的自适应自适应粒子群优化算法

获取原文
获取原文并翻译 | 示例

摘要

Acceleration coefficients are the control parameters used to tune the movements of cognition and social components in the particle swarm optimization (PSO) algorithm. Because most of the PSO algorithms treat individual particles equally despite the different positions of distinct particles, the inhomogeneous spread and scattering of the data samples during evolution are ignored. In this regard, the proposed PSO-FWAC algorithm aims to enhance the adaptability of individual particles by introducing the diverse acceleration coefficients according to their corresponding fitness values. The experimental results show that the PSO-FWAC outperforms the static and time-varying approaches.
机译:加速度系数是用于调整粒子群优化(PSO)算法中的认知和社会成分运动的控制参数。因为尽管不同粒子的位置不同,但大多数PSO算法均会平等地对待单个粒子,因此可以忽略演化过程中数据样本的不均匀散布和散布。在这方面,提出的PSO-FWAC算法旨在通过根据相应的适应度值引入不同的加速度系数来增强单个粒子的适应性。实验结果表明,PSO-FWAC优于静态和时变方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号